Search Results

Now showing 1 - 2 of 2
  • Item
    Flood risk in a range of spatial perspectives – from global to local scales
    (Katlenburg-Lindau : European Geophysical Society, 2019) Kundzewicz, Zbigniew W.; Su, Buda; Wang, Yanjun; Wang, Guojie; Wang, Guofu; Huang, Jinlong; Jiang, Tong
    The present paper examines flood risk (composed of hazard, exposure, and vulnerability) in a range of spatial perspectives – from the global to the local scale. It deals with observed records, noting that flood damage has been increasing. It also tackles projections for the future, related to flood hazard and flood losses. There are multiple factors driving flood hazard and flood risk and there is a considerable uncertainty in our assessments, and particularly in projections for the future. Further, this paper analyses options for flood risk reduction in several spatial dimensions, from global framework to regional to local scales. It is necessary to continue examination of the updated records of flood-related indices, trying to search for changes that influence flood hazard and flood risk in river basins.
  • Item
    Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany)
    (Katlenburg-Lindau : European Geophysical Society, 2009-5-8) Günther, A.; Thiel, C.
    In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.