Search Results

Now showing 1 - 10 of 21
  • Item
    An asymptotic analysis for a generalized Cahn--Hilliard system with fractional operators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In a recent paper the same authors have proved existence, uniqueness and regularity results for a class of viscous and nonviscous Cahn--Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers in the spectral sense of general linear operators, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space of square-integrable functions on a bounded and smooth three-dimensional domain, and have compact resolvents. Here, for the case of the viscous system, we analyze the asymptotic behavior of the solution as the fractional power coefficient of the second operator tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of the second operator appears.
  • Item
    Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn--Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in [Colli-Gilardi-Hilhorst 2015], letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.
  • Item
    Self-consistent field theory for a polymer brush. Part I: Asymptotic analysis in the strong-stretching limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Münch, Andreas; Wagner, Barbara
    In this study we consider the self-consistent field theory for a dry, in- compressible polymer brush, densely grafted on a substrate, describing the average segment density of a polymer in terms of an effective chemical potential for the interaction between the segments of the polymer chain. We present a systematic singular perturbation analysis of the self-consistent field theory in the strong-stretching limit, when the length scale of the ratio of the radius of gyration of the polymer chain to the extension of the brush from the substrate vanishes. Our analysis yields, for the first time, an approximation for the average segment density that is correct to leading order in the outer scaling and resolves the boundary layer singularity at the end of the polymer brush in the strong-stretching limit. We also show that in this limit our analytical results agree increasingly well with our numerical solutions to the full model equations comprising the self-consistent field theory.
  • Item
    New insights on the interfacial tension of electrochemical interfaces and the Lippmann equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dreyer, Wolfgang; Guhlke, Clemens; Landstorfer, Manuel; Neumann, Johannes; Müller, Rüdiger
    The Lippmann equation is considered as universal relationship between interfacial tension, double layer charge, and cell potential. Based on the framework of continuum thermo-electrodynamics we provide some crucial new insights to this relation. In a previous work we have derived a general thermodynamic consistent model for electrochemical interfaces, which showed a remarkable agreement to single crystal experimental data. Here we apply the model to a curved liquid metal electrode. If the electrode radius is large compared to the Debye length, we apply asymptotic analysis methods and obtain the Lippmann equation. We give precise definitions of the involved quantities and show that the interfacial tension of the Lippmann equation is composed of the surface tension of our general model, and contributions arising from the adjacent space charge layers. This finding is confirmed by a comparison of our model to experimental data of several mercury-electrolyte interfaces. We obtain qualitative and quantitative agreement in the 2V potential range for various salt concentrations. We also discuss the validity of our asymptotic model when the electrode radius is comparable to the Debye length.
  • Item
    Modelling compressible electrolytes with phase transition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dreyer, Wolfgang; Giesselmann, Jan; Kraus, Christiane
    A novel thermodynamically consistent diffuse interface model is derived for compressible electrolytes with phase transitions. The fluid mixtures may consist of N constituents with the phases liquid and vapor, where both phases may coexist. In addition, all constituents may consist of polarizable and magnetizable matter. Our introduced thermodynamically consistent diffuse interface model may be regarded as a generalized model of Allen-Cahn/Navier-Stokes/Poisson type for multi-component flows with phase transitions and electrochemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e. a non-coupled and a coupled regime, where the coupling takes place between the smallness parameter in the Poisson equation and the width of the interface. We recover in the sharp interface limit a generalized Allen-Cahn/Euler/Poisson system for mixtures with electrochemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satisfy, for instance, a generalized Gibbs-Thomson law and a dynamic Young-Laplace law.
  • Item
    Self-consistent field theory for a polymer brush. Part II: The effective chemical potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Münch, Andreas; Wagner, Barbara
    The most successful mean-field model to describe the collective behaviour of the large class of macromolecular polymers is the self-consistent field theory (SCFT). Still, even for the simple system of a grafted dry polymer brush, the mean-field equations have to be solved numerically. As one of very few alternatives that offer some analytical tractability the strong-stretching theory (SST) has led to explicit expressions for the effective chemical potential and consequently the free energy to promote an understanding of the underlying physics. Yet, a direct derivation of these analytical results from the SCFT model is still outstanding. In this study we present a systematic asymptotic theory based on matched asymtptotic expansions to obtain the effective chemical potential from the SCFT model for a dry polymer brush for large but finite stretching.
  • Item
    Asymptotics for the spectrum of a thin film equation in a singular limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Kitavtsev, Georgy; Recke, Lutz; Wagner, Barbara
    In this paper the linear stability properties of the steady states of a no-slip lubrication equation are studied. The steady states are configurations of droplets and arise during the late-phase dewetting process under the influence of both destabilizing van der Waals and stabilizing Born intermolecular forces, which in turn give rise to the minimum thickness eps of the remaining film connecting the droplets. The goal of this paper is to give an asymptotic description of the eigenvalues and eigenfunctions of the problem, linearized about the one-droplet solutions, as epsto 0. For this purpose, corresponding asymptotic eigenvalue problems with piecewise constant coefficients are constructed, such that their eigenvalue asymptotics can be determined analytically. A comparison with numerically computed eigenvalues and eigenfunctions shows good agreement with the asymptotic results and the existence of a spectrum gap to a single exponentially small eigenvalue for sufficiently small eps.
  • Item
    Spin coating of an evaporating polymer solution
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Münch, Andreas; Please, Colin P.; Wagner, Barbara
    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of the thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and due to evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent volume fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a ``skin'' on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. The critical parameters controlling this behaviour are found to be eps the ratio of the diffusion to advection time scales, delta the ratio of the evaporation to advection time scales and exp(-gamma), the ratio of the diffusivity of the initial mixture and the pure polymer. In particular, our analysis shows that for very small evaporation with delta ll exp(-3/(4gamma)) eps^3/4 skin formation can be prevented
  • Item
    A diffuse interface model for quasi-incrompressible flows : sharp interface limits and numerics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Aki, Gonca; Daube, Johannes; Dreyer, Wolfgang; Giesselmann, Jan; Kränkel, Mirko; Kraus, Christiane
    In this contribution, we investigate a diffuse interface model for quasi–incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn–Hilliard equation numerically by a Local Discontinuous Galerkin scheme.
  • Item
    Surface induced phase separation of a swelling hydrogel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hennessy, Matthew G.; Münch, Andreas; Wagner, Barbara
    We present a formulation of the free boundary problem for a hydrogel that accounts for the interfacial free energy and finite strain due to the large deformation of the polymer network during solvent transport across the free boundary. For the geometry of an initially dry layer fixed at a rigid substrate, our model predicts a phase transition when a critical value of the solvent concentration has been reached near the free boundary. A one-dimensional case study shows that depending on the flux rate at the free boundary an initial saturation front is followed by spinodal decomposition of the hydrogel and the formation of an interfacial front that moves through the layer. Moreover, increasing the shear modulus of the elastic network delays or even suppresses phase separation.