Search Results

Now showing 1 - 2 of 2
  • Item
    Nanoscale distribution of Bi atoms in InP1-xBix
    (London : Nature Publishing Group, 2017) Zhang, Liyao; Wu, Mingjian; Chen, Xiren; Wu, Xiaoyan; Spiecker, Erdmann; Song, Yuxin; Pan, Wenwu; Li, Yaoyao; Yue, Li; Shao, Jun; Wang, Shumin
    The nanoscale distribution of Bi in InPBi is determined by atom probe tomography and transmission electron microscopy. The distribution of Bi atoms is not uniform both along the growth direction and within the film plane. A statistically high Bi-content region is observed at the bottom of the InPBi layer close to the InPBi/InP interface. Bi-rich V-shaped walls on the (−111) and (1–11) planes close to the InPBi/InP interface and quasi-periodic Bi-rich nanowalls in the (1–10) plane with a periodicity of about 100 nm are observed. A growth model is proposed to explain the formation of these unique Bi-related nanoscale features. These features can significantly affect the deep levels of the InPBi epilayer. The regions in the InPBi layer with or without these Bi-related nanostructures exhibit different optical properties.
  • Item
    Chemical and electrochemical synthesis of platinum black
    (London : Nature Publishing Group, 2017) Stanca, S.E.; Hänschke, F.; Ihring, A.; Zieger, G.; Dellith, J.; Kessler, E.; Meyer, H.-G.
    We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.