Search Results

Now showing 1 - 4 of 4
  • Item
    Strong ferromagnetically-coupled spin valve sensor devices for droplet magnetofluidics
    (Basel : MDPI, 2015) Lin, Gungun; Makarov, Denys; Schmidt, Oliver G
    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.
  • Item
    Operational Parameters for Sub-Nano Tesla Field Resolution of PHMR Sensors in Harsh Environments
    (Basel : MDPI, 2021) Jeon, Taehyeong; Das, Proloy Taran; Kim, Mijin; Jeon, Changyeop; Lim, Byeonghwa; Soldatov, Ivan; Kim, CheolGi
    The resolution of planar-Hall magnetoresistive (PHMR) sensors was investigated in the frequency range from 0.5 Hz to 200 Hz in terms of its sensitivity, average noise level, and detectivity. Analysis of the sensor sensitivity and voltage noise response was performed by varying operational parameters such as sensor geometrical architectures, sensor configurations, sensing currents, and temperature. All the measurements of PHMR sensors were carried out under both constant current (CC) and constant voltage (CV) modes. In the present study, Barkhausen noise was revealed in 1/f noise component and found less significant in the PHMR sensor configuration. Under measured noise spectral density at optimized conditions, the best magnetic field detectivity was achieved better than 550 pT/√Hz at 100 Hz and close to 1.1 nT/√Hz at 10 Hz for a tri-layer multi-ring PHMR sensor in an unshielded environment. Furthermore, the promising feasibility and possible routes for further improvement of the sensor resolution are discussed.
  • Item
    One-sign order parameter in iron based superconductor
    (Basel : MDPI, 2012) Borisenko, Sergey V.; Zabolotnyy, Volodymyr B.; Kordyuk, Alexnader A.; Evtushinsky, Danil V.; Kim, Timur K.; Morozov, Igor V.; Follath, Rolf; Büchner, Bernd
    The onset of superconductivity at the transition temperature is marked by the onset of order, which is characterized by an energy gap. Most models of the iron-based superconductors find a sign-changing (s±) order parameter [1–6], with the physical implication that pairing is driven by spin fluctuations. Recent work, however, has indicated that LiFeAs has a simple isotropic order parameter [7–9] and spin fluctuations are not necessary [7,10], contrary to the models [1–6]. The strength of the spin fluctuations has been controversial [11,12], meaning that the mechanism of superconductivity cannot as yet be determined. We report the momentum dependence of the superconducting energy gap, where we find an anisotropy that rules out coupling through spin fluctuations and the sign change. The results instead suggest that orbital fluctuations assisted by phonons [13,14] are the best explanation for superconductivity.
  • Item
    A Dual-Mode Surface Acoustic Wave Delay Line for the Detection of Ice on 64°-Rotated Y-Cut Lithium Niobate
    (Basel : MDPI, 2024) Schulmeyer, Philipp; Weihnacht, Manfred; Schmidt, Hagen
    Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.