Search Results

Now showing 1 - 2 of 2
  • Item
    Taking stock of national climate policies to evaluate implementation of the Paris Agreement
    ([London] : Nature Publishing Group UK, 2020) Roelfsema, Mark; van Soest, Heleen L.; Harmsen, Mathijs; van Vuuren, Detlef P.; Bertram, Christoph; den Elzen, Michel; Höhne, Niklas; Iacobuta, Gabriela; Krey, Volker; Kriegler, Elmar; Luderer, Gunnar; Riahi, Keywan; Ueckerdt, Falko; Després, Jacques; Drouet, Laurent; Emmerling, Johannes; Frank, Stefan; Fricko, Oliver; Gidden, Matthew; Humpenöder, Florian; Huppmann, Daniel; Fujimori, Shinichiro; Fragkiadakis, Kostas; Gi, Keii; Keramidas, Kimon; Köberle, Alexandre C.; Aleluia Reis, Lara; Rochedo, Pedro; Schaeffer, Roberto; Oshiro, Ken; Vrontisi, Zoi; Chen, Wenying; Iyer, Gokul C.; Edmonds, Jae; Kannavou, Maria; Jiang, Kejun; Mathur, Ritu; Safonov, George; Vishwanathan, Saritha Sudharmma
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
  • Item
    Network-induced multistability through lossy coupling and exotic solitary states
    ([London] : Nature Publishing Group UK, 2020) Hellmann, Frank; Schultz, Paul; Jaros, Patrycja; Levchenko, Roman; Kapitaniak, Tomasz; Kurths, Jürgen; Maistrenko, Yuri
    The stability of synchronised networked systems is a multi-faceted challenge for many natural and technological fields, from cardiac and neuronal tissue pacemakers to power grids. For these, the ongoing transition to distributed renewable energy sources leads to a proliferation of dynamical actors. The desynchronisation of a few or even one of those would likely result in a substantial blackout. Thus the dynamical stability of the synchronous state has become a leading topic in power grid research. Here we uncover that, when taking into account physical losses in the network, the back-reaction of the network induces new exotic solitary states in the individual actors and the stability characteristics of the synchronous state are dramatically altered. These effects will have to be explicitly taken into account in the design of future power grids. We expect the results presented here to transfer to other systems of coupled heterogeneous Newtonian oscillators.