Search Results

Now showing 1 - 3 of 3
  • Item
    A Comparison of Floating-Electrode DBD and kINPen Jet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells Under Standardized Conditions
    (Dordrecht : Springer Science + Business Media B.V., 2017-9-6) Bekeschus, Sander; Lin, Abraham; Fridman, Alexander; Wende, Kristian; Weltmann, Klaus-Dieter; Miller, Vandana
    A comparative study of two plasma sources (floating-electrode dielectric barrier discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2 deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were largely dependent on the total energy input but not pulsing frequency, treatment time, or total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone and was inhibited by larger amounts of liquid present during the treatment. Jet plasma toxicity depended on peroxide generation as well as total cell number and amount of liquid. Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating short-lived species or other physical effects from plasmas. These in vitro results suggest a role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally, we provide a platform for correlation between different plasma sources for a predefined cellular response.
  • Item
    xCT (SLC7A11) expression confers intrinsic resistance to physical plasma treatment in tumor cells
    (Amsterdam [u.a.] : Elsevier, 2020) Bekeschus, Sander; Eisenmann, Sebastian; Sagwal, Sanjeev Kumar; Bodnar, Yana; Moritz, Juliane; Poschkamp, Broder; Stoffels, Ingo; Emmert, Steffen; Madesh, Muniswamy; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Gandhirajan, Rajesh Kumar
    Cold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines. We observed stable intracellular glutathione levels following plasma treatment only in the 'resistant' cell lines indicative of altered antioxidant mechanisms. Assessment of proteins involved in GSH metabolism revealed cystine-glutamate antiporter xCT (SLC7A11) to be significantly more abundant in the 'resistant' cell lines as compared to 'sensitive' cell lines. This decisive role of xCT was confirmed by pharmacological and genetic inhibition, followed by cold physical plasma treatment. Finally, microscopy analysis of ex vivo plasma-treated human melanoma punch biopsies suggested a correlation between apoptosis and basal xCT protein abundance. Taken together, our results demonstrate that xCT holds the potential as a biomarker predicting the sensitivity of tumor cells towards plasma treatment.
  • Item
    Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells
    (Basel : MDPI, 2019) Rödder, Katrin; Moritz, Juliane; Miller, Vandana; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert; Gandhirajan, Rajesh; Bekeschus, Sander
    Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells' activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone. © 2019 by the authors.