Search Results

Now showing 1 - 10 of 27
Loading...
Thumbnail Image
Item

The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

2018-5-16, Reuter, Stephan, von Woedtke, Thomas, Weltmann, Klaus-Dieter

The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.

Loading...
Thumbnail Image
Item

Plasma medical oncology: Immunological interpretation of head and neck squamous cell carcinoma

2020, Witzke, Katharina, Seebauer, Christian, Jesse, Katja, Kwiatek, Elisa, Berner, Julia, Semmler, Marie‐Luise, Boeckmann, Lars, Emmert, Steffen, Weltmann, Klaus‐Dieter, Metelmann, Hans‐Robert, Bekeschus, Sander

The prognosis of patients suffering from advanced-stage head and neck squamous cell carcinoma (HNSCC) remains poor. Medical gas plasma therapy receives growing attention as a novel anticancer modality. Our recent prospective observational study on HNSCC patients suffering from contaminated tumor ulcerations without lasting remission after first-line anticancer therapy showed remarkable efficacy of gas plasma treatment, with the ulcerated tumor surface decreasing by up to 80%. However, tumor growth relapsed, and this biphasic response may be a consequence of immunological and molecular changes in the tumor microenvironment that could be caused by (a) immunosuppression, (b) tumor cell adaption, (c) loss of microbe-induced immunostimulation, and/or (d) stromal cell adaption. These considerations may be vital for the design of clinical plasma trials in the future.

Loading...
Thumbnail Image
Item

Nitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrate

2014, Iseni, S., Zhang, S., Van Gessel, A.F.H., Hofmann, S., Van Ham, B.T.J., Reuter, S., Weltmann, K.-D., Bruggeman, P.J.

The effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.

Loading...
Thumbnail Image
Item

Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing

2019, Schmidt, Anke, Woedtke, Thomas, von, Vollmar, Brigitte, Hasse, Sybille, Bekeschus, Sander

Wound healing is strongly associated with the presence of a balanced content of reactive species in which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing due to its ability to deliver a beneficial mixture of reactive species directly to the cells. Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence analysis was used to illustrate and quantified microvascular features. Results: Plasma exerted significant effects on wound healing in mice, including the promotion of granulation and reepithelialization as a consequence of the migration of skin cells, the balance of antioxidant and inflammatory response, and the early induction of macrophage and neutrophil recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The cellular redox homeostasis was maintained and cells were defended from damage by a strong modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling. Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in chronic wound healing.

Loading...
Thumbnail Image
Item

Foundations of plasmas for medical applications

2022, von Woedtke, T., Laroussi, M., Gherardi, M.

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids like water or physiological saline by a CAP source is performed in order to study specific biological activities. A basic understanding of the interaction between plasma and liquids and bio-interfaces is essential to follow biological plasma effects. Charged species, metastable species, and other atomic and molecular reactive species first produced in the main plasma ignition are transported to the discharge afterglow to finally be exposed to the biological targets. Contact with these liquid-dominated bio-interfaces generates other secondary reactive oxygen and nitrogen species (ROS, RNS). Both ROS and RNS possess strong oxidative properties and can trigger redox-related signalling pathways in cells and tissue, leading to various impacts of therapeutic relevance. Dependent on the intensity of plasma exposure, redox balance in cells can be influenced in a way that oxidative eustress leads to stimulation of cellular processes or oxidative distress leads to cell death. Currently, clinical CAP application is realized mainly in wound healing. The use of plasma in cancer treatment (i.e. plasma oncology) is a currently emerging field of research. Future perspectives and challenges in plasma medicine are mainly directed towards the control and optimization of CAP devices, to broaden and establish its medical applications, and to open up new plasma-based therapies in medicine.

Loading...
Thumbnail Image
Item

Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment

2020, Freund, Eric, Spadola, Chiara, Schmidt, Anke, Privat-Maldonado, Angela, Bogaerts, Annemie, Woedtke, Thomas von, Weltmann, Klaus-Dieter, Heidecke, Claus-Dieter, Partecke, Lars-Ivo, Käding, André, Bekeschus, Sander

The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy. © Copyright © 2020 Freund, Spadola, Schmidt, Privat-Maldonado, Bogaerts, von Woedtke, Weltmann, Heidecke, Partecke, Käding and Bekeschus.

Loading...
Thumbnail Image
Item

Influence of aerosol injection on the liquid chemistry induced by an RF argon plasma jet

2021, Sremački, Ivana, Bruno, Giuliana, Jablonowski, Helena, Leys, Christophe, Nikiforov, Anton, Wende, Kristian

A radio-frequency driven plasma jet in annular geometry coupled with an aerosol injection into the effluent is proposed for the controllable reactive oxygen species (ROS)/reactive nitrogen species (RNS) production and delivery on biological targets in the context of plasma medicine, e.g. wound care. The role of the aqueous aerosol in modulating the reactive species production is investigated by combining physical and chemical analytics. Optical emission spectroscopy, electron paramagnetic resonance spectroscopy, and a biochemical model based on cysteine as a tracer molecule have been applied, revealing that aerosol injection shifts the production of ROS from atomic and singlet oxygen toward hydroxyl radicals, which are generated in the droplets. Species generation occurred mainly at the droplets boundary layer during their transport through the effluent, leading to a limited cysteine turnover upon introduction into the aerosol solution. The subsequent delivery of unmodified cysteine molecules at a target suggested the application of the plasma source for the topical delivery of drugs, expanding the potential applicability and effectiveness. The presence of RNS was negligible regardless of aerosol injection and only traces of the downstream products nitrate and nitrate were detected. In summary, the aerosol injection into the effluent opens new avenues to control UV radiation and reactive species output for the biomedical applications of non-thermal plasma sources, reaching out toward the regulation, safety, and efficacy of targeted applications.

Loading...
Thumbnail Image
Item

Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure

2022, Bekeschus, Sander, Miebach, Lea, Pommerening, Jonas, Clemen, Ramona, Witzke, Katharina

Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.

Loading...
Thumbnail Image
Item

Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo

2021, Mahdikia, Hamed, Saadati, Fariba, Freund, Eric, Gaipl, Udo S., Majidzadeh-A, Keivan, Shokri, Babak, Bekeschus, Sander

While many new and emerging therapeutic concepts have appeared throughout the last decades, cancer still is fatal in many patients. At the same time, the importance of immunology in oncotherapy is increasingly recognized, not only since the advent of checkpoint therapy. Among the many types of tumors, also breast cancer has an immunological dimension that might be exploited best by increasing the immunogenicity of the tumors in the microenvironment. To this end, we tested a novel therapeutic concept, gas plasma irradiation, for its ability to promote the immunogenicity and increase the toxicity of breast cancer cells in vitro and in vivo. Mechanistically, this emerging medical technology is employing a plethora of reactive oxygen species being deposited on the target cells and tissues. Using 2D cultures and 3D tumor spheroids, we found gas plasma-irradiation to drive apoptosis and immunogenic cancer cell death (ICD) in vitro, as evidenced by an increased expression of calreticulin, heat-shock proteins 70 and 90, and MHC-I. In 4T1 breast cancer-bearing mice, the gas plasma irradiation markedly decreased tumor burden and increased survival. Interestingly, non-treated tumors injected in the opposite flank of mice exposed to our novel treatment also exhibited reduced growth, arguing for an abscopal effect. This was concomitant with an increase of apoptosis and tumor-infiltrating CD4+ and CD8+ T-cells as well as dendritic cells in the tissues. In summary, we found gas plasma-irradiated murine breast cancers to induce toxicity and augmented immunogenicity, leading to reduced tumor growth at a site remote to the treatment area.

Loading...
Thumbnail Image
Item

Oral SARS-CoV-2 reduction by local treatment: A plasma technology application?

2022, von Woedtke, Thomas, Gabriel, Gülsah, Schaible, Ulrich E., Bekeschus, Sander

The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.