Search Results

Now showing 1 - 10 of 26
Loading...
Thumbnail Image
Item

Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates

2020, Senok, Abiola, Nassar, Rania, Celiloglu, Handan, Nabi, Anju, Alfaresi, Mubarak, Weber, Stefan, Rizvi, Irfan, Müller, Elke, Reissig, Annett, Gawlik, Darius, Monecke, Stefan, Ehricht, Ralf

Reports from Arabian Gulf countries have demonstrated emergence of novel methicillin resistant Staphylococcus aureus (MRSA) strains. To address the lack of data from the United Arab Emirates (UAE), genetic characterisation of MRSA identified between December 2017 and August 2019 was conducted using DNA microarray-based assays. The 625 MRSA isolates studied were grouped into 23 clonal complexes (CCs) and assigned to 103 strains. CC5, CC6, CC22 and CC30 represented 54.2% (n/N = 339/625) of isolates with other common CCs being CC1, CC8, CC772, CC361, CC80, CC88. Emergence of CC398 MRSA, CC5-MRSA-IV Sri Lanka Clone and ST5/ST225-MRSA-II, Rhine-Hesse EMRSA/New York-Japan Clone in our setting was detected. Variants of pandemic CC8-MRSA-[IVa + ACME I] (PVL+) USA300 were detected and majority of CC772 strains were CC772-MRSA-V (PVL+), “Bengal- Bay Clone”. Novel MRSA strains identified include CC5-MRSA-V (edinA+), CC5-MRSA-[VT + fusC], CC5-MRSA-IVa (tst1+), CC5-MRSA-[V/VT + cas + fusC + ccrA/B-1], CC8-MRSA-V/VT, CC22-MRSA-[IV + fusC + ccrAA/(C)], CC45-MRSA-[IV + fusC + tir], CC80-MRSA-IVa, CC121-MRSA-V/VT, CC152-MRSA-[V + fusC] (PVL+). Although several strains harboured SCC-borne fusidic acid resistance (fusC) (n = 181), erythromycin/clindamycin resistance (ermC) (n = 132) and gentamicin resistance (aacA-aphD) (n = 179) genes, none harboured vancomycin resistance genes while mupirocin resistance gene mupR (n = 2) and cfr gene (n = 1) were rare. An extensive MRSA repertoire including CCs previously unreported in the region and novel strains which probably arose locally suggest an evolving MRSA landscape. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses

2022, Wallace, Zoë, Kopycinski, Jakub, Yang, Hongbing, McCully, Michelle L., Eggeling, Christian, Chojnacki, Jakub, Dorrell, Lucy

T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.

Loading...
Thumbnail Image
Item

Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference

2020, Gomes, André D., Kobelke, Jens, Bierlich, Jörg, Dellith, Jan, Rothhardt, Manfred, Bartelt, Hartmut, Frazão, Orlando

The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range. We propose a method to surpass this limitation by using a few-mode sensing interferometer instead of a single-mode one. The overlap response of the different modes produces a measurable envelope, whilst preserving an extremely high magnification factor, an order of magnification higher than current state-of-the-art performances. Furthermore, we demonstrate the application of that method in the development of a giant sensitivity fibre refractometer with a sensitivity of around 500 µm/RIU (refractive index unit) and with a magnification factor over 850.

Loading...
Thumbnail Image
Item

Systematic evaluation of particle loss during handling in the percutaneous transluminal angioplasty for eight different drug-coated balloons

2020, Heinrich, Andreas, Engler, Martin S., Güttler, Felix V., Matthäus, Christian, Popp, Jürgen, Teichgräber, Ulf K.-M.

Paclitaxel drug coated balloons (DCBs) should provide optimal drug transfer exclusively to the target tissue. The aim of this study was to evaluate the particle loss by handling during angioplasty. A robotic arm was developed for systematic and reproducible drug abrasion experiments. The contact force on eight different commercially available DCB types was gradually increased, and high-resolution microscopic images of the deflated and inflated balloons were recorded. Three types of DCBs were classified: no abrasion of the drug in both statuses (deflated and inflated), significant abrasion only in the inflated status, and significant abrasion in both statuses. Quantitative measurements via image processing confirmed the qualitative classification and showed changes of the drug area between 2.25 and 45.73% (13.28 ± 14.29%) in the deflated status, and between 1.66 and 40.41% (21.43 ± 16.48%) in the inflated status. The structures and compositions of the DCBs are different, some are significantly more susceptible to drug loss. Particle loss by handling during angioplasty leads to different paclitaxel doses in the target regions for same DCB types. Susceptibility to involuntary drug loss may cause side effects, such as varying effective paclitaxel doses, which may explain variations in studies regarding the therapeutic outcome.

Loading...
Thumbnail Image
Item

Electrochemical growth mechanism of nanoporous platinum layers

2021, Stanca, Sarmiza-Elena, Vogt, Oliver, Zieger, Gabriel, Ihring, Andreas, Dellith, Jan, Undisz, Andreas, Rettenmayr, Markus, Schmidt, Heidemarie

Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.

Loading...
Thumbnail Image
Item

Fiber-based 3D nano-printed holography with individually phase-engineered remote points

2022, Plidschun, Malte, Zeisberger, Matthias, Kim, Jisoo, Wieduwilt, Torsten, Schmidt, Markus A.

The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions. Holograms were implemented using 3D nano-printing on planar substrates and optical fibers, showing excellent agreement between design and implemented structures. In addition to planar substrates, holograms were also generated on modified single-mode fibers, creating intensity distributions consisting of about 200 individual foci distributed over multiple image planes. The presented scheme yields an innovative pathway for phase-controlled 3D digital holography over remote distances, yielding an enormous potential application in fields such as quantum technology, life sciences, bioanalytics and telecommunications. Overall, all fields requiring precise excitation of higher-order optical resonances, including nanophotonics, fiber optics and waveguide technology, will benefit from the concept.

Loading...
Thumbnail Image
Item

Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes

2015, Wieduwilt, Torsten, Tuniz, Alessandro, Linzen, Sven, Goerke, Sebastian, Dellith, Jan, Hübner, Uwe, Schmidt, Markus A.

Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

Loading...
Thumbnail Image
Item

Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

2016, Trützschler, Julia, Sentosun, Kadir, Mozooni, Babak, Mattheis, Roland, McCord, Jeffrey

High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

Loading...
Thumbnail Image
Item

Observation of direction instability in a fiber ring laser

2021, Arshad, Muhammad Assad, Hartung, Alexander, Pratiwi, Arni Candra, Jäger, Matthias

We report on the observation of a new phenomenon occurring in a fiber ring laser. This phenomenon is about the transition from an initially bidirectional emission of a reciprocal fiber ring laser to a unidirectional emission at a certain pump power threshold. In addition, the final direction is not predefined but appears to be randomly chosen every time the threshold is exceeded. Therefore, we term this new phenomenon direction instability. Furthermore, we provide a first discussion of how the instability threshold is influenced by the length and the loss of the cavity. We show that the threshold follows a power times length scaling, indicating a nonlinear origin.

Loading...
Thumbnail Image
Item

Bessel beam CARS of axially structured samples

2015, Heuke, Sandro, Zheng, Juanjuan, Akimov, Denis, Heintzmann, Rainer, Schmitt, Michael, Popp, Jürgen

We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.