Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

TopUp SERS substrates with integrated internal standard

2018, Patze, Sophie, Hübner, Uwe, Weber, Karina, Cialla-May, Dana, Popp, Jürgen

Surface-enhanced Raman spectroscopy (SERS) is known as a molecular-specific and highly sensitive method. In order to enable the routine application of SERS, powerful SERS substrates are of great importance. Within this manuscript, a TopUp SERS substrate is introduced which is fabricated by a top-down process based on microstructuring as well as a bottom-up generation of silver nanostructures. The Raman signal of the support material acts as an internal standard in order to improve the quantification capabilities. The analyte molecule coverage of sulfamethoxazole on the surface of the nanostructures is characterized by the SERS signal evolution fitted by a Langmuir–Freundlich isotherm.

Loading...
Thumbnail Image
Item

Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices

2020, Yakimchuk, Dzmitry V., Bundyukova, Victoria D., Ustarroz, Jon, Terryn, Herman, Baert, Kitty, Kozlovskiy, Artem L., Zdorovets, Maxim V., Khubezhov, Soslan A., Trukhanov, Alex V., Trukhanov, Sergei V., Panina, Larissa V., Arzumanyan, Grigory M., Mamatkulov, Kahramon Z., Tishkevich, Daria I., Kaniukov, Egor Y., Sivakov, Vladimir

The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures' morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.

Loading...
Thumbnail Image
Item

Comparative Analysis of Raman Signal Amplifying Effectiveness of Silver Nanostructures with Different Morphology

2022, Yakimchuk, Dzmitry V., Khubezhov, Soslan A., Prigodich, Uladzislau V., Tishkevich, Daria I., Trukhanov, Sergei V., Trukhanov, Alex V., Sivakov, Vladimir, Kaniukov, Egor Y.

To increase the attractiveness of the practical application of molecular sensing methods, the experimental search for the optimal shape of silver nanostructures allowing to increase the Raman cross section by several orders of magnitude is of great interest. This paper presents a detailed study of spatially separated plasmon-active silver nanostructures grown in SiO2/Si template pores with crystallite, dendrite, and “sunflower-like” nanostructures shapes. Nile blue and 2-mercaptobenzothiazole were chosen as the model analytes for comparative evaluation of the Raman signal amplification efficiency using these structures. It was discussed the features of the structures for the enhancement of Raman intensity. Finally, we showed that silver crystals, dendrites, and “sunflower-like” nanostructures in SiO2/Si template could be used as the relevant materials for Raman signal amplification, but with different efficiency.

Loading...
Thumbnail Image
Item

Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique

2017, Zukovskaja, Olga, Jahn, Izabella-Jolan, Weber, Karina, Cialla-May, Dana, Popp, Jürgen

Pyocyanin (PYO) is a metabolite specific for Pseudomonas aeruginosa. In the case of immunocompromised patients, it is currently considered a biomarker for life-threating Pseudomonas infections. In the frame of this study it is shown, that PYO can be detected in aqueous solution by employing surface-enhanced Raman spectroscopy (SERS) combined with a microfluidic platform. The achieved limit of detection is 0.5 μM. This is ~2 orders of magnitude below the concentration of PYO found in clinical samples. Furthermore, as proof of principle, the SERS detection of PYO in the saliva of three volunteers was also investigated. This body fluid can be collected in a non-invasive manner and is highly chemically complex, making the detection of the target molecule challenging. Nevertheless, PYO was successfully detected in two saliva samples down to 10 μM and in one sample at a concentration of 25 μM. This indicates that the molecules present in saliva do not inhibit the efficient adsorption of PYO on the surface of the employed SERS active substrates.