Search Results

Now showing 1 - 6 of 6
  • Item
    Modelling of sea salt concentrations over Europe: Key uncertainties and comparison with observations
    (München : European Geopyhsical Union, 2011) Tsyro, S.; Aas, W.; Soares, J.; Sofiev, M.; Berge, H.; Spindler, G.
    Sea salt aerosol can significantly affect the air quality. Sea salt can cause enhanced concentrations of particulate matter and change particle chemical composition, in particular in coastal areas, and therefore should be accounted for in air quality modelling. We have used an EMEP Unified model to calculate sea salt concentrations and depositions over Europe, focusing on studying the effects of uncertainties in sea salt production and lifetime on calculation results. Model calculations of sea salt have been compared with EMEP observations of sodium concentrations in air and precipitation for a four year period, from 2004 to 2007, including size (fine/coarse) resolved EMEP intensive measurements in 2006 and 2007. In the presented calculations, sodium air concentrations are between 8% and 46% overestimated, whereas concentrations in precipitation are systematically underestimated by 65–70% for years 2004–2007. A series of model tests have been performed to investigate the reasons for this underestimation, but further studies are needed. The model is found to reproduce the spatial distribution of Na+ in air and precipitation over Europe fairly well, and to capture most of sea salt episodes. The paper presents the main findings from a series of tests in which we compare several different sea spray source functions and also look at the effects of meteorological input and the efficiency of removal processes on calculated sea salt concentrations. Finally, sea salt calculations with the EMEP model have been compared with results from the SILAM model and observations for 2007. While the models produce quite close results for Na+ at the majority of 26 measurement sites, discrepancies in terms of bias and temporal correlation are also found. Those differences are believed to occur due to differences in the representation of source function and size distribution of sea salt aerosol, different meteorology used for model runs and the different models' resolution. This study contributes to getting a better insight on uncertainties associated with sea salt calculations and thus facilitates further improvement of aerosol modelling on both regional and global scales.
  • Item
    Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study
    (München : European Geopyhsical Union, 2012) Wagner, R.; Ajtai, T.; Kandler, K.; Lieke, K.; Linke, C.; Müller, T.; Schnaiter, M.; Vragel, M.
    We have retrieved the wavelength-dependent imaginary parts of the complex refractive index for five different Saharan dust aerosol particles of variable mineralogical composition at wavelengths between 305 and 955 nm. The dust particles were generated by dispersing soil samples into a laboratory aerosol chamber, typically yielding particle sizes with mean diameters ranging from 0.3 to 0.4 μm and maximum diameters from 2 to 4 μm. The extinction and absorption coefficients as well as the number size distribution of the dust particles were simultaneously measured by various established techniques. An inversion scheme based on a spheroidal dust model was employed to deduce the refractive indices. The retrieved imaginary parts of the complex refractive index were in the range from 0.003 to 0.005, 0.005 to 0.011, and 0.016 to 0.050 at the wavelengths 955, 505, and 305 nm. The hematite content of the dust particles was determined by electron-microscopical single particle analysis. Hematite volume fractions in the range from 1.1 to 2.7% were found for the different dusts, a range typical for atmospheric mineral dust. We have performed a sensitivity study to assess how accurately the retrieved imaginary refractive indices could be reproduced by calculations with mixing rule approximations using the experimentally determined hematite contents as input.
  • Item
    Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa
    (München : European Geopyhsical Union, 2012) Haustein, K.; Pérez, C.; Baldasano, J.M.; Jorba, O.; Basart, S.; Miller, R.L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M.C.; Washington, R.; Müller, D.; Tesche, M.; Weinzierl, B.; Esselborn, M.; Schladitz, A.
    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Pérez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6–0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodélé Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced. The remaining negative AOD bias (due to underestimated surface wind speeds) can be substantially reduced by decreasing the threshold friction velocity in the model.
  • Item
    Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber
    (München : European Geopyhsical Union, 2012) Voigtländer, J.; Duplissy, J.; Rondo, L.; Kürten, A.; Stratmann, F.
    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species.
  • Item
    Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign
    (München : European Geopyhsical Union, 2011) Fountoukis, C.; Racherla, P.N.; Denier van der Gon, H.A.C.; Polymeneas, P.; Charalampidis, P.E.; Pilinis, C.; Wiedensohler, A.; Dall'Osto, M.; O'Dowd, C.; Pandis, S.N.
    Sea salt aerosol can significantly affect the air quality. Sea salt can cause enhanced concentrations of particulate matter and change particle chemical composition, in particular in coastal areas, and therefore should be accounted for in air quality modelling. We have used an EMEP Unified model to calculate sea salt concentrations and depositions over Europe, focusing on studying the effects of uncertainties in sea salt production and lifetime on calculation results. Model calculations of sea salt have been compared with EMEP observations of sodium concentrations in air and precipitation for a four year period, from 2004 to 2007, including size (fine/coarse) resolved EMEP intensive measurements in 2006 and 2007. In the presented calculations, sodium air concentrations are between 8% and 46% overestimated, whereas concentrations in precipitation are systematically underestimated by 65–70% for years 2004–2007. A series of model tests have been performed to investigate the reasons for this underestimation, but further studies are needed. The model is found to reproduce the spatial distribution of Na+ in air and precipitation over Europe fairly well, and to capture most of sea salt episodes. The paper presents the main findings from a series of tests in which we compare several different sea spray source functions and also look at the effects of meteorological input and the efficiency of removal processes on calculated sea salt concentrations. Finally, sea salt calculations with the EMEP model have been compared with results from the SILAM model and observations for 2007. While the models produce quite close results for Na+ at the majority of 26 measurement sites, discrepancies in terms of bias and temporal correlation are also found. Those differences are believed to occur due to differences in the representation of source function and size distribution of sea salt aerosol, different meteorology used for model runs and the different models' resolution. This study contributes to getting a better insight on uncertainties associated with sea salt calculations and thus facilitates further improvement of aerosol modelling on both regional and global scales.
  • Item
    The regional aerosol-climate model REMO-HAM
    (München : European Geopyhsical Union, 2012) Pietikäinen, J.-P.; O'Donnell, D.; Teichmann, C.; Karstens, U.; Pfeifer, S.; Kazil, J.; Podzun, R.; Fiedler, S.; Kokkola, H.; Birmili, W.; O'Dowd, C.; Baltensperger, U.; Weingartner, E.; Gehrig, R.; Spindler, G.; Kulmala, M.; Feichter, J.; Jacob, D.; Laaksonen, A.
    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.