Search Results

Now showing 1 - 10 of 24
Loading...
Thumbnail Image
Item

In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006

2017, Schladitz, A., Müller, T., Kaaden, N., Massling, A., Kandler, K., Ebert, M., Weinbruch, S., Deutscher, C., Wiedensohler, A.

In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.

Loading...
Thumbnail Image
Item

Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006

2017, Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H., Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling, A., Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S., Weinbruch, S.

During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).

Loading...
Thumbnail Image
Item

Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

2017, Kahn, Ralph, Petzold, Andreas, Wendisch, Manfred, Bierwirth, Eike, Dinter, Tilman, Esselborn, Michael, Fiebig, Marcus, Heese, Birgit, Knippertz, Peter, Müller, Detlef, Schladitz, Alexander, Von Hoyningen-HUENE, Wolfgang

Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite’s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05–0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR’s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

Loading...
Thumbnail Image
Item

Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM

2017, Tesche, Matthias, Ansmann, Albert, MüLLER, Detlef, Althausen, Dietrich, Mattis, Ina, Heese, Birgit, Freudenthaler, Volker, Wiegner, Matthias, Esselborn, Michael, Pisani, Gianluca, Knippertz, Peter

Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.

Loading...
Thumbnail Image
Item

Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index

2017, Kandler, K., Lieke, K., Benker, N., Emmel, C., Küpper, M., Müller-Ebert, D., Ebert, M., Scheuvens, D., Schladitz, A., Schütz, L., Weinbruch, S.

A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. The aerosol at Praia is a superposition of mineral dust, sea-salt, sulphates and soot. Particles smaller than 500 nm are mainly mineral dust, mineral dust–sulphate mixtures, sulphates and soot–sulphate mixtures. Particles larger then 2.5μm consist of mineral dust, sea-salt and few mineral dust–sulphate mixtures. A transition range exists in between. The major internal mixtures are mineral dust–sulphate and soot–sulphate. Mineral dust–sea-salt mixtures occur occasionally, mineral dust–soot mixtures were not observed. The aspect ratio was 1.3–1.4 for dry particles smaller than 500 nm and 1.6–1.7 for larger ones. Parameterizations are given for dry and humid state. Although the real part of the refractive index showed low variation (1.55–1.58 at 532 nm), a multi-modal imaginary part was detected as function of particle size, reflecting the complex composition. Soot mainly influences the absorption for wavelengths longer than the haematite absorption edge, whereas for shorter wavelengths dust is dominating. The refractive index of the aerosol depends on the source region of the mineral dust and on the presence/absence of a marine component.

Loading...
Thumbnail Image
Item

Atmospheric new particle formation at Utö, Baltic Sea 2003-2005

2017, Hyvärinen, A.-P., Komppula, M., Engler, C., Kivekäs, N., Kerminen, V.-M., Dal Maso, M., Viisanen, Y., Lihavainen, H.

Nearly 3 yr (March 2003–December 2005) of continuous particle number size distribution measurements have been conducted at the island of Ut¨o in the Baltic Sea. The measured particle size range was from 7 to 530 nm. During the measurement period, a total of 103 regional new-particle formation events were observed. The characteristics of the nucleation events at Ut¨o were similar to those reported in the literature in other Nordic sites, though measured condensation sinks were rather high (geometric mean of 3.8 × 10−3 s−1) during event days. Clear evidence was found that new particles nucleate regionally near Ut¨o, rather than are transported from greater distances. However, the Baltic Sea seems to have an inhibiting effect on new-particle formation. The boreal forest areas in the continental Finland were found to have an enhancing effect on the nucleation probability in Ut¨o, suggesting that at least some of the precursor gases for nucleation and/or condensational growth of particles originate from these forests. In addition to regional new-particle formation events, a total of 94 local events were observed in Ut¨o. These are short-lived events with a small footprint area, and can at least partly be tracked down to the emissions of ship traffic operating at Ut¨o.

Loading...
Thumbnail Image
Item

Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles

2017, Otto, Sebastian, Bierwirth, Eike, Weinzierl, Bernadett, Kandler, Konrad, Esselborn, Michael, Tesche, Matthias, Schladitz, Alexander, Wendisch, Manfred, Trautmann, Thomas

The solar optical properties of Saharan mineral dust observed during the Saharan Mineral Dust Experiment (SAMUM) were explored based on measured size-number distributions and chemical composition. The size-resolved complex refractive index of the dust was derived with real parts of 1.51–1.55 and imaginary parts of 0.0008–0.006 at 550 nm wavelength. At this spectral range a single scattering albedo ωo and an asymmetry parameter g of about 0.8 were derived. These values were largely determined by the presence of coarse particles. Backscatter coefficients and lidar ratios calculated with Mie theory (spherical particles) were not found to be in agreement with independently measured lidar data. Obviously the measured Saharan mineral dust particles were of non-spherical shape. With the help of these lidar and sun photometer measurements the particle shape as well as the spherical equivalence were estimated. It turned out that volume equivalent oblate spheroids with an effective axis ratio of 1:1.6 matched these data best. This aspect ratio was also confirmed by independent single particle analyses using a scanning electron microscope. In order to perform the non-spherical computations, a database of single particle optical properties was assembled for oblate and prolate spheroidal particles. These data were also the basis for simulating the non-sphericity effects on the dust optical properties: ωo is influenced by up to a magnitude of only 1% and g is diminished by up to 4% assuming volume equivalent oblate spheroids with an axis ratio of 1:1.6 instead of spheres. Changes in the extinction optical depth are within 3.5%. Non-spherical particles affect the downwelling radiative transfer close to the bottom of the atmosphere, however, they significantly enhance the backscattering towards the top of the atmosphere: Compared to Mie theory the particle non-sphericity leads to forced cooling of the Earth-atmosphere system in the solar spectral range for both dust over ocean and desert.

Loading...
Thumbnail Image
Item

Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region - an overview of the airborne in situ and lidar measurements during SAMUM-2

2017, Weinzierl, Bernadett, Sauer, Daniel, Esselborn, Michael, Petzold, Andreas, Veira, Andreas, Rose, Maximilian, Mund, Susanne, Wirth, Martin, Ansmann, Albert, Tesche, Matthias, Gross, Silke, Freudenthaler, Volker

In the framework of the Saharan Mineral Dust Experiment (SAMUM) airborne High Spectral Resolution Lidar and in situ measurements of the particle size, aerosol mixing state and absorption coefficient were conducted. Here, the properties of mineral dust and tropical biomass burning layers in the Cape Verde region in January/February 2008 are investigated and compared with the properties of fresh dust observed in May/June 2006 close the Sahara. In the Cape Verde area, we found a complex stratification with dust layers covering the altitude range below 2 km and biomass burning layers aloft. The aerosol type of the individual layers was classified based on depolarization and lidar ratios and, in addition, on in situ measured Ångström exponents of absorption åap. The dust layers had a depth of 1.3 ± 0.4 km and showed a median åap of 3.95. The median effective diameter Deff was 2.5 μm and the dust layers over Cape Verde yielded clear signals of aging: large particles were depleted due to gravitational settling and the accumulation mode diameter was shifted towards larger sizes as a result of coagulation. The tropical biomass layers had a depth of 2.0 ± 1.1 km and were characterized by a median åap of 1.34. They always contained a certain amount of large dust particles and showed a median Deff of 1.1 μm and a fine mode Deff,fine of 0.33. The dust and biomass burning layers had a median aerosol optical depth (AOD) of 0.23 and 0.09, respectively. The median contributions to the AOD of the total atmospheric column below 10 km were 75 and 37%, respectively.

Loading...
Thumbnail Image
Item

How to find bananas in the atmospheric aerosol': New approach for analyzing atmospheric nucleation and growth events

2017, Heintzenberg, Jost, Wehner, Birgit, Birmili, Wolfram

We have devised a new search algorithm for secondary particle formation events, or ‘nucleation events’ in data sets of atmospheric particle size distributions. The search algorithm is simple and based on the investigation of 18 integral parameters of the particle size distribution, three of which were found to be most relevant for identifying nucleation events. The algorithm is tested using long-term size distribution data sets of high-size resolution observed at Melpitz, Hohenpeissenberg, and Leipzig, Germany, and Beijing, China, thereby covering a wide range of clean and polluted conditions. By specifying the particular training sets, the method can be used by other researchers with different data sets or different research goals. The same search approach could be applied to identify and analyze other systematic changes in size distribution such as during frontal passages or sand storms. As an example application of the new algorithm, the 50 strongest nucleation events (‘bananas’) at each of the four sites are analyzed statistically in terms of average changes of integral parameters of the particle size distribution.

Loading...
Thumbnail Image
Item

Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - A review

2017, Swietlicki, E., Hansson, H.-C., Hämeri, K., Svenningsson, B., Massling, A., Mcfiggans, G., Mcmurry, P.H., Petäjä, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., Kulmala, M.

The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the sizeresolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.