Search Results

Now showing 1 - 3 of 3
  • Item
    Extensive study of magneto-optical and optical properties of Cd1−xMnxTe between 675 and 1025 nm
    (New York, NY : American Inst. of Physics, 2023) Tyborski, Christoph; Hassan, Muhammad T.; Flisgen, Thomas; Schiemangk, Max; Wicht, Andreas
    We determine Faraday rotations and measure the optical reflection and transmission from magneto-optical Cd1−xMnxTe crystals with various stoichiometric ratios. For wavelengths between 675 and 1025 nm, we derive Verdet constants, optical loss coefficients, and the complex indices of reflection that are relevant measures to find suitable stoichiometric ratios of Cd1−xMnxTe for the realization of miniaturized optical isolators. By reflection and transmission measurements, we determine the stoichiometric ratios of several different Cd1−xMnxTe crystals and discuss the observed dependence of the optical properties on the stoichiometric ratio with respect to their use in optical isolators. Finally, we show the relevant figure of merit, i.e., the ratio of Verdet constants and optical loss coefficients for Cd1−xMnxTe crystals with Mn contents ranging from x = 0.14 to x = 0.50.
  • Item
    High-temperature annealing of AlN films grown on 4H-SiC
    (New York, NY : American Inst. of Physics, 2020) Brunner, F.; Cancellara, L.; Hagedorn, S.; Albrecht, M.; Weyers, M.
    The effect of high-temperature annealing (HTA) at 1700 °C on AlN films grown on 4H-SiC substrates by metalorganic vapor phase epitaxy has been studied. It is shown that the structural quality of the AlN layers improves significantly after HTA similar to what has been demonstrated for AlN grown on sapphire. Dislocation densities reduce by one order of magnitude resulting in 8 × 108 cm-2 for a-type and 1 × 108 cm-2 for c-type dislocations. The high-temperature treatment removes pits from the surface by dissolving nanotubes and dislocations in the material. XRD measurements prove that the residual strain in AlN/4H-SiC is further relaxed after annealing. AlN films grown at higher temperature resulting in a lower as-grown defect density show only a marginal reduction in dislocation density after annealing. Secondary ion mass spectrometry investigation of impurity concentrations reveals an increase of Si after HTA probably due to in-diffusion from the SiC substrate. However, C concentration reduces considerably with HTA that points to an efficient carbon removal process (i.e., CO formation). © 2020 Author(s).
  • Item
    Temperature dependence of the complex permittivity in microwave range of some industrial polymers
    (New York, NY : American Inst. of Physics, 2022) Porteanu, Horia-Eugen; Kaempf, Rudolf; Flisgen, Thomas; Heinrich, Wolfgang
    The microwave properties of a number of polymers common in industry are investigated. A cylindrical resonator in the TM012 mode is used. The cavity perturbation method and detailed COMSOL simulations are applied for extracting the complex permittivity as a function of temperature. The results are useful for the design of plastic processing tools by heating with electromagnetic fields. The intrinsic parameters of absorption are derived based on two exponential decays: polarization and Arrhenius dependence of the decay times on temperature.