Search Results

Now showing 1 - 10 of 10
  • Item
    Spectral field mapping in plasmonic nanostructures with nanometer resolution
    (London : Nature Publishing Group, 2018) Krehl, J.; Guzzinati, G.; Schultz, J.; Potapov, P.; Pohl, D.; Martin, J.; Verbeeck, J.; Fery, A.; Büchner, B.; Lubk, A.
    Plasmonic nanostructures and -devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization methods for the fundamental nanoscale interactions. However, the direct and quantitative mapping of transient electric and magnetic fields characterizing the plasmonic coupling has been proven elusive to date. Here we demonstrate how to directly measure the inelastic momentum transfer of surface plasmon modes via the energy-loss filtered deflection of a focused electron beam in a transmission electron microscope. By scanning the beam over the sample we obtain a spatially and spectrally resolved deflection map and we further show how this deflection is related quantitatively to the spectral component of the induced electric and magnetic fields pertaining to the mode. In some regards this technique is an extension to the established differential phase contrast into the dynamic regime. © 2018, The Author(s).
  • Item
    Tuning the interplay between nematicity and spin fluctuations in Na1-x Li x FeAs superconductors
    (London : Nature Publishing Group, 2018) Baek, S.-H.; Bhoi, D.; Nam, W.; Lee, B.; Efremov, D.V.; Büchner, B.; Kim, K.H.
    Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and 75As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na1-x Li x FeAs; For x ≤ 0.02, the nematic transition promotes SFs. In contrast, for x ≥ 0.03, the system undergoes a non-magnetic phase transition at a temperature T 0 into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.
  • Item
    A diuranium carbide cluster stabilized inside a C80 fullerene cage
    (London : Nature Publishing Group, 2018) Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D.-C.; Duignan, T.J.; Autschbach, J.; Wang, S.; Wang, Y.; Velkos, G.; Popov, A.A.; Aghdassi, N.; Duhm, S.; Li, X.; Li, J.; Echegoyen, L.; Schwarz, W.H.E.; Chen, N.
    Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing I h(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@I h(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@I h(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@I h(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
  • Item
    Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers
    (London : Nature Publishing Group, 2018) Zhou, J.; Zhu, H.; Liu, T.-H.; Song, Q.; He, R.; Mao, J.; Liu, Z.; Ren, W.; Liao, B.; Singh, D.J.; Ren, Z.; Chen, G.
    Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.
  • Item
    Symmetry regimes for circular photocurrents in monolayer MoSe2
    (London : Nature Publishing Group, 2018) Quereda, J.; Ghiasi, T.S.; You, J.-S.; van den Brink, J.; van Wees, B.J.; van der Wal, C.H.
    In monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPCs) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe2 monolayer. The dependence on bias and gate voltages reveals two different CPC contributions, dominant at different voltages and with different dependence on illumination wavelength and incidence angles. We theoretically analyze symmetry requirements for effects that can yield CPC and compare these with the observed angular dependence and symmetries that occur for our device geometry. This reveals that the observed CPC effects require a reduced device symmetry, and that effects due to Berry curvature of the electronic states do not give a significant contribution.
  • Item
    Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics
    (London : Nature Publishing Group, 2018) Yuan, X.; Weyhausen-Brinkmann, F.; Martín-Sánchez, J.; Piredda, G.; Křápek, V.; Huo, Y.; Huang, H.; Schimpf, C.; Schmidt, O.G.; Edlinger, J.; Bester, G.; Trotta, R.; Rastelli, A.
    The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
  • Item
    Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency
    (London : Nature Publishing Group, 2018) Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; Sotnikov, A.; Wang, Z.; Broido, D.; Singh, D.J.; Chen, G.; Nielsch, K.; Ren, Z.
    Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (N v) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (v m ∼2800 m s-1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation.
  • Item
    Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal
    (London : Nature Publishing Group, 2018) Seiro, S.; Jiao, L.; Kirchner, S.; Hartmann, S.; Friedemann, S.; Krellner, C.; Geibel, C.; Si, Q.; Steglich, F.; Wirth, S.
    Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.
  • Item
    Amorphous martensite in β-Ti alloys
    (London : Nature Publishing Group, 2018) Zhang, L.; Zhang, H.; Ren, X.; Eckert, J.; Wang, Y.; Zhu, Z.; Gemming, T.; Pauly, S.
    Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α′/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding β-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.
  • Item
    Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna
    (London : Nature Publishing Group, 2018) Chen, Y.; Zopf, M.; Keil, R.; Ding, F.; Schmidt, O.G.
    Many quantum photonic technologies require the efficient generation of entangled pairs of photons, but to date there have been few ways to produce them reliably. Sources based on parametric down conversion operate at very low efficiency per pulse due to the probabilistic generation process. Semiconductor quantum dots can emit single pairs of entangled photons deterministically but they fall short due to the extremely low-extraction efficiency. Strategies for extracting single photons from quantum dots, such as embedding them in narrowband optical cavities, are difficult to translate to entangled photons. Here, we build a broadband optical antenna with an extraction efficiency of 65% ± 4% and demonstrate a highly-efficient entangled-photon source by collecting strongly entangled photons (fidelity of 0.9) at a pair efficiency of 0.372 ± 0.002 per pulse. The high brightness achieved by our source represents a step forward in the development of optical quantum technologies.