Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb

2018, Agrapidis, Cliò Efthimia, van den Brink, Jeroen, Nishimoto, Satoshi

We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points ϕ=π2 and φ=3π2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.

Loading...
Thumbnail Image
Item

Modulations in martensitic Heusler alloys originate from nanotwin ordering

2018, Gruner, M.E., Niemann, R., Entel, P., Pentcheva, R., Rößler, U.K., Nielsch, K., Fähler, S.

Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.

Loading...
Thumbnail Image
Item

Strengthening of Al-Fe3Al composites by the generation of harmonic structures

2018, Shahid, R.N., Scudino, S.

Strengthening of alloys can be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix. Here, we extend the concept of harmonic structures to metal matrix composites and analyze the effectiveness of such bimodal microstructures for strengthening composites consisting of a pure Al matrix reinforced with Fe3Al particles. Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure.

Loading...
Thumbnail Image
Item

Palladium-catalyzed synthesis of aldehydes from aryl iodides and formic acid with propylphosphonic anhydride as the activator

2018, Wu, Xiao-Feng

An interesting palladium-catalyzed carbonylative procedure for the synthesis of aromatic aldehydes from aryl iodides has been developed. By using propylphosphonic anhydride as the activator for formic acid, moderate to good yields of the corresponding aldehydes were produced with formic acid as the carbonyl and hydrogen donors. Interestingly, neither additional phosphine ligand nor inert gas protection is needed here.