Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

ZonalWave Number Diagnosis of RossbyWave-Like Oscillations Using Paired Ground-Based Radars

2020, He, Maosheng, Yamazaki, Yosuke, Hoffmann, Peter, Hall, Chris M., Tsutsumi, Masaki, Li, Guozhu, Chau, Jorge Luis

Free traveling Rossby wave normal modes (RNMs) are often investigated through large-scale space-time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m=1, excepting one 16-day oscillation associated with m=2. We discuss the m=1 oscillations as transient RNMs and the m=2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5-day wave, namely, an oscillation at 5–7 days with m=1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs. ©2020. The Authors.

Loading...
Thumbnail Image
Item

High-Order Solar Migrating Tides Quench at SSW Onsets

2020, He, Maosheng, Forbes, Jeffrey M., Chau, Jorge L., Li, Guozhu, Wan, Weixing, Korotyshkin, Dmitry V.

Sudden stratospheric warming events (SSWs) are the most spectacular atmospheric vertical coupling processes, well-known for being associated with diverse wave activities in the upper atmosphere and ionosphere. The first four solar tidal harmonics have been reported as being engaged. Here, combining mesospheric winds detected by three midlatitude radars, we demonstrate at least the first six harmonics that occurred during SSW 2018. Wave number diagnosis demonstrates that all six harmonics are dominated by migrating components. Wavelet analyses reveal that the fourth, fifth, and sixth harmonics quench after the SSW onset. The six harmonics and the quenching appear also in a statistical analysis based on near-12-year observations from one of the radars. We attribute the quenching to reversal of the background eastward wind. ©2020. The Authors.