Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Generalization of coupled S-parameter calculation to compute beam impedances in particle accelerators

2020, Flisgen, Thomas, Gjonaj, Erion, Glock, Hans-Walter, Tsakanian, Andranik

In this article, a decomposition approach for the computation of beam coupling impedances is proposed. This approach can account for the mutual electromagnetic coupling in long accelerator structures consisting of several consecutive segments. The method is based on the description of the individual segments using a multimodal network matrix formulation in which the charged particle beam is considered as an additional port. Then, the generalized multimodal network matrices of all segments are combined to a multimodal network matrix of the complete structure. The beam coupling impedance as well as the scattering parameters of the full structure are recovered as particular matrix elements in this multimodal network matrix. The new method generalizes Coupled S-Parameter Calculation (CSC) introduced in earlier work such that charged particle beams are considered. Consequently, the introduced scheme is referred to as CSC. Application examples for realistic accelerator components such as the simulation of a full TESLA 1.3 GHz-cavity of the European XFEL are provided. These simulations demonstrate the high accuracy and numerical performance of the proposed method.

Loading...
Thumbnail Image
Item

Nanopatterned sapphire substrates in deep-UV LEDs : is there an optical benefit?

2020, Manley, Phillip, Walde, Sebastian, Hagedorn, Sylvia, Hammerschmidt, Martin, Burger, Sven, Becker, Christiane

Light emitting diodes (LEDs) in the deep ultra-violet (DUV) offer new perspectives for multiple applications ranging from 3D printing to sterilization. However, insufficient light extraction severely limits their efficiency. Nanostructured sapphire substrates in aluminum nitride based LED devices have recently shown to improve crystal growth properties, while their impact on light extraction has not been fully verified. We present a model for understanding the impact of nanostructures on the light extraction capability of DUV-LEDs. The model assumes an isotropic light source in the semiconductor layer stack and combines rigorously computed scattering matrices with a multilayer solver. We find that the optical benefit of using a nanopatterned as opposed to a planar sapphire substrate to be negligible, if parasitic absorption in the p-side of the LED is dominant. If losses in the p-side are reduced to 20%, then for a wavelength of 265 nm an increase of light extraction efficiency from 7.8% to 25.0% is possible due to nanostructuring. We introduce a concept using a diffuse (’Lambertian’) reflector as p-contact, further increasing the light extraction efficiency to 34.2%. The results underline that transparent p-sides and reflective p-contacts in DUV-LEDs are indispensable for enhanced light extraction regardless of the interface texture between semiconductor and sapphire substrate. The optical design guidelines presented in this study will accelerate the development of high-efficiency DUV-LEDs. The model can be extended to other multilayer opto-electronic nanostructured devices such as photovoltaics or photodetectors. © 2020 OSA - The Optical Society. All rights reserved.

Loading...
Thumbnail Image
Item

Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope

2020, Trager-Cowan, C., Alasmari, A., Avis, W., Bruckbauer, J., Edwards, P.R., Ferenczi, G., Hourahine, B., Kotzai, A., Kraeusel, S., Kusch, G., Martin, R.W., McDermott, R., Naresh-Kumar, G., Nouf-Allehiani, M., Pascal, E., Thomson, D., Vespucci, S., Smith, M.D., Parbrook, P.J., Enslin, J., Mehnke, F., Kuhn, C., Wernicke, T., Kneissl, M., Hagedorn, S., Knauer, A., Walde, S., Weyers, M., Coulon, P.-M., Shields, P.A., Bai, J., Gong, Y., Jiu, L., Zhang, Y., Smith, R.M., Wang, T., Winkelmann, A.

The scanning electron microscopy techniques of electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI) and cathodoluminescence (CL) hyperspectral imaging provide complementary information on the structural and luminescence properties of materials rapidly and non-destructively, with a spatial resolution of tens of nanometres. EBSD provides crystal orientation, crystal phase and strain analysis, whilst ECCI is used to determine the planar distribution of extended defects over a large area of a given sample. CL reveals the influence of crystal structure, composition and strain on intrinsic luminescence and/or reveals defect-related luminescence. Dark features are also observed in CL images where carrier recombination at defects is non-radiative. The combination of these techniques is a powerful approach to clarifying the role of crystallography and extended defects on a material's light emission properties. Here we describe the EBSD, ECCI and CL techniques and illustrate their use for investigating the structural and light emitting properties of UV-emitting nitride semiconductor structures. We discuss our investigations of the type, density and distribution of defects in GaN, AlN and AlGaN thin films and also discuss the determination of the polarity of GaN nanowires. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

The 2020 UV emitter roadmap

2020, Amano, Hiroshi, Collazo, Ramón, De Santi, Carlo, Einfeldt, Sven, Funato, Mitsuru, Glaab, Johannes, Hagedorn, Sylvia, Hirano, Akira, Hirayama, Hideki, Ishii, Ryota, Kashima, Yukio, Kawakami, Yoichi, Kirste, Ronny, Kneissl, Michael, Martin, Robert, Mehnke, Frank, Meneghini, Matteo, Ougazzaden, Abdallah, Parbrook, Peter J., Rajan, Siddharth, Reddy, Pramod, Römer, Friedhard, Friedhard, Jan, Sarkar, Biplab, Scholz, Ferdinand, Schowalter, Leo J, Shields, Philip, Sitar, Zlatko, Sulmoni, Luca, Wang, Tao, Wernicke, Tim, Weyers, Markus, Witzigmann, Bernd, Wu, Yuh-Renn, Wunderer, Thomas, Zhang, Yuewei

Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm - due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments. © 2020 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Wavelength stabilized high pulse power 48 emitter laser bars for automotive light detection and ranging application

2020, Klehr, Andreas, Liero, Armin, Christopher, Heike, Wenzel, Hans, Maaßdorf, Andre, Della Casa, Pietro, Fricke, Jörg, Ginolas, Arnim, Knigge, Andrea

Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components for light detection and ranging systems, e.g. for autonomous driving and object detection. We present here an internally wavelength stabilized distributed Bragg reflector broad area laser bar with 48 emitters. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is specifically optimized for wavelength-stabilized pulsed operation, applying a surface Bragg grating with high reflectivity. The bar is electrically driven by a new in-house developed high-speed driver based on GaN transistors providing current pulses with amplitudes of up to 1000 A and a repetition frequency of 10 kHz. The generated 4 ns to 10 ns long optical pulses are nearly rectangular shaped and reach a pulse peak power in excess of 600 Watts at 25 °C. The optical spectrum with a centre wavelength of about 900 nm has a width of 0.15 nm (FWHM) with a side mode suppression ratio > 30 dB. © 2020 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Status and Prospects of AlN Templates on Sapphire for Ultraviolet Light-Emitting Diodes

2020, Hagedorn, Sylvia, Walde, Sebastian, Knauer, Arne, Susilo, Norman, Pacak, Daniel, Cancellara, Leonardo, Netzel, Carsten, Mogilatenko, Anna, Hartmann, Carsten, Wernicke, Tim, Kneissl, Michael, Weyers, Markus

Herein, the scope is to provide an overview on the current status of AlN/sapphire templates for ultraviolet B (UVB) and ultraviolet C (UVC) light-emitting diodes (LEDs) with focus on the work done previously. Furthermore, approaches to improve the properties of such AlN/sapphire templates by the combination of high-temperature annealing (HTA) and patterned AlN/sapphire interfaces are discussed. While the beneficial effect of HTA is demonstrated for UVC LEDs, the growth of relaxed AlGaN buffer layers on HTA AlN is a challenge. To achieve relaxed AlGaN with a low dislocation density, the applicability of HTA for AlGaN is investigated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Improving AlN Crystal Quality and Strain Management on Nanopatterned Sapphire Substrates by High-Temperature Annealing for UVC Light-Emitting Diodes

2020, Hagedorn, Sylvia, Walde, Sebastian, Susilo, Norman, Netzel, Carsten, Tillner, Nadine, Unger, Ralph-Stephan, Manley, Phillip, Ziffer, Eviathar, Wernicke, Tim, Becker, Christiane, Lugauer, Hans-Jürgen, Kneissl, Michael, Weyers, Markus

Herein, AlN growth by metalorganic vapor-phase epitaxy on hole-type nanopatterned sapphire substrates is investigated. Cracking occurs for an unexpectedly thin-layer thickness, which is associated to altered nucleation conditions caused by the sapphire pattern. To overcome the obstacle of cracking and at the same time to decrease the threading dislocation density by an order of magnitude, high-temperature annealing (HTA) of a 300 nm-thick AlN starting layer is successfully introduced. By this method, 800 nm-thick, fully coalesced and crack-free AlN is grown on 2 in. nanopatterned sapphire wafers. The usability of such templates as basis for UVC light-emitting diodes (LEDs) is furthermore proved by subsequent growth of an UVC-LED heterostructure with single peak emission at 265 nm. Prerequisites for the enhancement of the light extraction efficiency by hole-type nanopatterned sapphire substrates are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Passive Detection and Imaging of Human Body Radiation Using an Uncooled Field-Effect Transistor-Based THz Detector

2020, Čibiraitė-Lukenskienė, Dovilė, Ikamas, Kęstutis, Lisauskas, Tautvydas, Krozer, Viktor, Roskos, Hartmut G., Lisauskas, Alvydas

This work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.1–1.5-THz frequency range, with values√ of the optical responsivity and noise-equivalent power of around 40 mA/W and 42 pW/ Hz, respectively. These values are in good agreement with simulations which suggest an even broader flat responsivity range exceeding 2.0 THz. The successful imaging demonstrates the impressive thermal sensitivity which can be achieved with such a sensor. Recording of a 2.3 × 7.5-cm2-sized image of the fingers of a hand with a pixel size of 1 mm2 at a scanning speed of 1 mm/s leads to a signal-to-noise ratio of 2 and a noise-equivalent temperature difference of 4.4 K. This approach shows a new sensing approach with field-effect transistors as THz detectors which are usually used for active THz detection. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Continuous Wave THz System Based on an Electrically Tunable Monolithic Dual Wavelength Y-Branch DBR Diode Laser

2020, Gwaro, Jared O., Brenner, Carsten, Theurer, L.S., Maiwald, M., Sumpf, Bernd, Hofmann, Martin R.

We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz applications. The laser generates electrically tunable THz difference frequencies in the range between 100 and 300 GHz. The optical beats are tuned via current injection into a micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR) section of the diode. The laser is integrated in a homodyne THz system employing fiber coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a THz filter as well as in THz metrology in thickness determination of a polyethylene sample.

Loading...
Thumbnail Image
Item

Strongly coupled, high-quality plasmonic dimer antennas fabricated using a sketch-and-peel technique

2020, Gittinger, Moritz, Höflich, Katja, Smirnov, Vladimir, Kollmann, Heiko, Lienau, Christoph, Silies, Martin

A combination of helium- and gallium-ion beam milling together with a fast and reliable sketch-and-peel technique is used to fabricate gold nanorod dimer antennas with an excellent quality factor and with gap distances of less than 6 nm. The high fabrication quality of the sketch-and-peel technique compared to a conventional ion beam milling technique is proven by polarisation-resolved linear dark-field spectromicroscopy of isolated dimer antennas. We demonstrate a strong coupling of the two antenna arms for both fabrication techniques, with a quality factor of more than 14, close to the theoretical limit, for the sketch-and-peel-produced antennas compared to only 6 for the conventional fabrication process. The obtained results on the strong coupling of the plasmonic dimer antennas are supported by finite-difference time-domain simulations of the light-dimer antenna interaction. The presented fabrication technique enables the rapid fabrication of large-scale plasmonic or dielectric nanostructures arrays and metasurfaces with single-digit nanometer scale milling accuracy. © 2020 Christoph Lienau, Martin Silies et al., published by De Gruyter, Berlin/Boston.