Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides

2018, Peng, J.-B., Wu, F.-P., Xu, C., Qi, X., Ying, J., Wu, X.-F.

Chemistry; Catalysis; Organic Synthesis © 2018 The Author(s)Functionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO)6 as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis. Functionalized alkyl iodides were prepared in moderate to excellent yields with outstanding functional group tolerance. Besides the high value of the obtained products, all the atoms from the starting materials were incorporated in the final products and the reaction had high atom efficiency as well.

Loading...
Thumbnail Image
Item

3,3′-Dimethyl-1,1′-methyl­enediimidazolium tetra­bromido­cobaltate(II)

2018, Peppel, Tim, Spannenberg, Anke

The title compound, (C9H14N4)[CoBr4], was obtained as single crystals directly in very low yield as a side product in the reaction of 1,1′-bis­(1-methyl­imidazolium)acetate bromide and CoBr2. The title compound consists of an imidazolium-based dication and a tetra­bromido­cobaltate(II) complex anion, which are connected via C—H...Br inter­actions in the crystal. The dihedral angle between the imidazolium rings in the cation is 72.89 (16)°. The CoII ion in the anion is coordinated tetra­hedrally by four bromide ligands [Co—Br = 2.4025 (5)–2.4091 (5) Å and Br—Co—Br = 106.224 (17)–113.893 (17)°]. The compound exhibits a high melting point (>300°C) and is a light-blue solid under ambient conditions.

Loading...
Thumbnail Image
Item

New Low-Melting Triply Charged Homoleptic Cr(III)-Based Ionic Liquids in Comparison to Their Singly Charged Heteroleptic Analogues

2021, Peppel, Tim, Köckerling, Martin

A series of new low-melting triply charged homoleptic Cr(III)-based ionic liquids of the general formula (RMIm)3[Cr(NCS)6] (R = methyl, ethyl, n-butyl, benzyl) is reported. Their syntheses and properties are described in comparison to their singly charged heteroleptic analogues of the general formula (RMIm)[Cr(NCS)4L2] (R = methyl, ethyl, n-butyl, benzyl; L = pyridine, γ-picoline). In total, sixteen new Reineckate related salts with large imidazolium cations are described. Out of these, five compounds were crystallized, and their structures determined by single-crystal X-ray structure analyses. They all consisted of discrete anions and cations with octahedrally coordinated Cr(III) ions. In the structures, various hydrogen contacts interconnect the entities to build up hydrogen bonded networks. Thermal investigations showed relatively low melting points for the homoleptic complexes. The compounds with the [Cr(NCS)6]3− anion melt without decomposition and are stable up to 200 K above their melting points. The complex salts with the [Cr(NCS)4L2]− anion, in contrast, start to decompose and lose L molecules (Pyr or Pic) already at the melting point.

Loading...
Thumbnail Image
Item

1-Butyl-3-methyl­imidazolium tri­bromido­(tri­phenyl­phosphane-κP)nickelate(II) butan-1-ol hemisolvate

2021, Peppel, T., Köckerling, M.

The solvated title salt, (C8H15N2)[NiBr3(P(C6H5)3)]·0.5C4H10O, was obtained in the form of single crystals directly from the reaction mixture. The mol­ecular structure consists of separated 1-butyl-3-methyl­imidazolium cations, tri­bromido­(tri­phenyl­phosphane)nickelate(II) anions and half a solvent mol­ecule of 1-butanol, all connected via multiple hydrogen contacts to form a three-dimensional network. The co-crystallized 1-butanol mol­ecule is disordered and adopts two orientations. The central C—C bonds of both orientations are located on an inversion centre (Wyckoff site 2b of space group P21/n). Thereby, each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. The dried solvent-free compound exhibits a relatively low melting point (m.p. = 412 K).

Loading...
Thumbnail Image
Item

1-Di­phenyl­phosphanyl-2-(di­phenyl­phosphor­yl)hydrazine

2018, Höhne, Martha, Aluri, Bhaskar, Spannenberg, Anke, Müller, Bernd H., Peulecke, Normen, Rosenthal, Uwe

The title compound, C24H22N2OP2, is an asymmetrically substituted hydrazine derivative bearing a phosphoryl and a phosphanyl substituent. The PNNP backbone has a torsion angle of −131.01 (8)°. In the crystal, mol­ecules form centrosymmetric dimers by inter­molecular N—H...O hydrogen bonds, which are further linked into a three-dimensional network by weak C—H...O and C—H...π inter­actions.

Loading...
Thumbnail Image
Item

(S)-Alanine ethyl ester tetra­cyanidoborate, (C5H12NO)[B(CN)4]

2021, Peppel, T., Köckerling, M.

The title mol­ecular salt, C5H12NO+·C4BN4− or (C5H12NO)[B(CN)4], was obtained as single crystals by slow evaporation of a solution of the compound in aceto­nitrile over several weeks. The asymmetric unit contains two (S)-alanine ethyl ester cations and two tetra­cyanidoborate anions, which are linked by N—H...N hydrogen bonds. The compound exhibits a relatively low melting point of 110°C and shows a solid–solid phase transition near room temperature (Ts–s = 29°C) on the basis of DSC measurements.

Loading...
Thumbnail Image
Item

1,1-Bis(di­phenyl­phosphor­yl)hydrazine

2018, Höhne, Martha, Aluri, Bhaskar R., Spannenberg, Anke, Müller, Bernd H., Peulecke, Normen, Rosenthal, Uwe

The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).

Loading...
Thumbnail Image
Item

Tetra­carbon­yl[N-(di­phenyl­phosphanyl-κP)-N,N′-diisoprop­yl-P-phenyl­phospho­rus di­amide-κP]molybdenum(0) with an unknown solvent

2018, Höhne, Martha, Gongoll, Marc, Spannenberg, Anke, Müller, Bernd H., Peulecke, Normen, Rosenthal, Uwe

The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN(iPr)P(Ph)NH(iPr) and four carbonyl ligands in a distorted octa­hedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, mol­ecules are linked by N—H...O and C—H...O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

Loading...
Thumbnail Image
Item

Tetra­carbonyl-2κ4C-[μ-5-methyl-1,1,3-triphenyl-2-(propan-2-yl)-2,4-di­aza-1,3-diphosphahexan-4-ido-1κN4:2κP1,P3](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-1κ2N,N′)lithiummolybdenum

2018, Höhne, Martha, Spannenberg, Anke, Müller, Bernd H., Peulecke, Normen, Rosenthal, Uwe

The title complex, [LiMo(C6H16N2)(C24H29N2P2)(CO)4], contains a distorted octa­hedrally coordinated molybdenum centre bearing a li­thia­ted P,P′-cis-chelating PNPN ligand, which results in a nearly planar four-membered metallacycle. The Li atom is coordinated by one equivalent tetra­methyl­ethylenedi­amine. In the crystal, mol­ecules are linked via weak C—H...O inter­actions, forming a chain along the b-axis direction.

Loading...
Thumbnail Image
Item

Palladium-catalyzed synthesis of aldehydes from aryl iodides and formic acid with propylphosphonic anhydride as the activator

2018, Wu, Xiao-Feng

An interesting palladium-catalyzed carbonylative procedure for the synthesis of aromatic aldehydes from aryl iodides has been developed. By using propylphosphonic anhydride as the activator for formic acid, moderate to good yields of the corresponding aldehydes were produced with formic acid as the carbonyl and hydrogen donors. Interestingly, neither additional phosphine ligand nor inert gas protection is needed here.