Search Results

Now showing 1 - 2 of 2
  • Item
    An efficient two-polymer binder for high-performance silicon nanoparticle-based lithium-ion batteries: A systematic case study with commercial polyacrylic acid and polyvinyl butyral polymers
    (Pennington, NJ : Electrochemical Society Inc., 2019) Urbanski, A.; Omar, A.; Guo, J.; Janke, A.; Reuter, U.; Malanin, M.; Schmidt, F.; Jehnichen, D.; Holzschuh, M.; Simon, F.; Eichhorn, K.-J.; Giebeler, L.; Uhlmann, P.
    Silicon is one of the most promising anode materials for high energy density lithium ion batteries (LIBs) due to its high theoretical capacity and natural abundance. Unfortunately, significant challenges arise due to the large volume change of silicon upon lithiation/delithiation which inhibit its broad commercialization. An advanced binder can, in principle, reversibly buffer the volume change, and maintain strong adhesion toward various components as well as the current collector. In this work, we present the first report on the applicability of polyvinyl butyral (PVB) polymer as a binder component for silicon nanoparticles-based LIBs. Characteristic binder properties of commercial PVB and polyacrylic acid (PAA) polymers are compared. The work focuses on polymer mixtures of PVB polymers with PAA, for an improved binder composition which incorporates their individual advantages. Different ratios of polymers are systematically studied to understand the effect of particular polymer chains, functional groups and mass fractions, on the electrochemical performance. We demonstrate a high-performance polymer mixture which exhibits good binder-particle interaction and strong adhesion to Cu-foil. PAA/PVB-based electrode with a Si loading of ∼1 mg/cm2 tested between 0.01 and 1.2 V vs. Li/Li+ demonstrate specific capacities as high as 2170 mAh/g after the first hundred cycles. © The Author(s) 2019.
  • Item
    Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides
    (Washington, DC [u.a.] : Assoc., 2022) Liu, Lixiang; Huang, Shaozhuan; Shi, Wujun; Sun, Xiaolei; Pang, Jinbo; Lu, Qiongqiong; Yang, Ye; Xi, Lixia; Deng, Liang; Oswald, Steffen; Yin, Yin; Liu, Lifeng; Ma, Libo; Schmidt, Oliver G.; Shi, Yumeng; Zhang, Lin
    Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional “Swiss-roll” microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.