Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties

2018, Ghunaim, R., Scholz, M., Damm, C., Rellinghaus, B., Klingeler, R., Büchner, B., Mertig, M., Hampel, S.

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

Loading...
Thumbnail Image
Item

Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films

2020, Park, G.-H., Reichlova, H., Schlitz, R., Lammel, M., Markou, A., Swekis, P., Ritzinger, P., Kriegner, D., Noky, J., Gayles, J., Sun, Y., Felser, C., Nielsch, K., Goennenwein, S.T.B., Thomas, A.

We report a robust anomalous Nernst effect in Co2MnGa thin films in the thickness regime between 20 and 50 nm. The anomalous Nernst coefficient varied in the range of -2.0 to -3.0 μV/K at 300 K. We demonstrate that the anomalous Hall and Nernst coefficients exhibit similar behavior and fulfill the Mott relation. We simultaneously measure all four transport coefficients of the longitudinal resistivity, transversal resistivity, Seebeck coefficient, and anomalous Nernst coefficient. We connect the values of the measured and calculated Nernst conductivity by using the remaining three magnetothermal transport coefficients, where the Mott relation is still valid. The intrinsic Berry curvature dominates the transport due to the relation between the longitudinal and transversal transport. Therefore, we conclude that the Mott relationship is applicable to describe the magnetothermoelectric transport in Weyl semimetal Co2MnGa as a function of film thickness.

Loading...
Thumbnail Image
Item

Increasing the performance of a superconducting spin valve using a Heusler alloy

2018, Kamashev, A.A., Validov, A.A., Schumann, J., Kataev, V., Büchner, B., Fominov, Y.V., Garifullin, I.A.

We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1-xFexAl with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and offof the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the Heusler-based multilayer with a F2 layer thickness of ca. 1 nm. © 2018 Kamashev et al.

Loading...
Thumbnail Image
Item

Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane

2018, Guo, Zhangwei, Liu, Tong, Wang, Qingtao, Gao, Guanhui

Bimetallic cost-effective CoNi nanoparticles (NPs) are conveniently supported on titanium carbides (MXene) by a simple one-step wet-chemical method. The synthesized CoNi/MXene catalysts are characterized by XPS, TEM, STEM-HAADF and ICP-AES. The as-prepared CoNi NPs with a size of 2.8 nm are well dispersed on the MXene surface. It is found that among the CoNi bimetallic system, Co0.7Ni0.3 shows the best performance toward catalyzing ammonia borane (AB) decomposition with a turnover frequency value of 87.6 molH2 molcat−1 min−1 at 50 °C. The remarkable catalytic performance is attributed to the mild affiliation of MXene to NPs, which not only stabilizes NPs to maintain a good dispersion but also leaves sufficient surface active sites to facilitate the catalytic reaction.

Loading...
Thumbnail Image
Item

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1-xFexAly spin-valve structure

2019, Kamashev, A.A., Garif'yanov, N.N., Validov, A.A., Schumann, J., Kataev, V., Büchner, B., Fominov, Y.V., Garifullin, I.A.

We report the superconducting properties of the Co2Cr1-xFexAly/Cu/Ni/Cu/Pb spin-valve structure the magnetic part of which comprises the Heusler alloy layer HA = Co2Cr1-xFexAly with a high degree of spin polarization (DSP) of the conduction band and a Ni layer of variable thickness. The separation between the superconducting transition curves measured for the parallel (α = 0°) and perpendicular (α = 90°) orientation of the magnetization of the HA and the Ni layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This suggests that the observed minimum and the corresponding full switching effect of the spin valve is caused by the long-range triplet component of the superconducting condensate in the multilayer. Such a large effect can be attributed to a half-metallic nature of the HA layer, which in the orthogonal configuration efficiently draws off the spin-polarized Cooper pairs from the space between the HA and Ni layers. Our results indicate a significant potential of the concept of a superconducting spin-valve multilayer comprising a half-metallic ferromagnet, recently proposed by A. Singh et al., Phys. Rev. X 2015, 5, 021019, in achieving large values of the switching effect.