Search Results

Now showing 1 - 2 of 2
  • Item
    Combinatorial synthesis of (YxGd1-x)Ba2Cu3Ox superconducting thin films
    (Amsterdam [u.a.] : Elsevier, 2012) Kirchner, A.; Erbe, M.; Freudenberg, T.; Hühne, R.; Feys, J.; Van Driessche, I.; Schultz, L.; Holzapfel, B.
    Environmentally friendly water-based YBa2Cu3Ox (YBCO) and GdBa2Cu3Ox (GdBCO) precursor solutions were synthesized to realize thin films by chemical solution deposition. Pure YBCO and GdBCO precursor solutions were used for ink plotting on SrTiO3 substrates and subsequent thermal treatment at the corresponding crystallization temperature. Phase formation of Gd123 requires a higher crystallization temperature of 840 °C compared to the Y123 phase. The critical temperature of YBCO films is about 92 K with a sharp transition into the superconducting state. Micro liter sized ink volumes of YBCO and GdBCO were successfully mixed for two-dimensional ink plotting of a (YxGd1-x)Ba2Cu3Ox film library. A homogeneous surface and no indication of a-axis growth were found in all mixed films.
  • Item
    Determination of Pressure Dependence of Polymer Phase Transitions by pVT Analysis
    (Basel : MDPI, 2018) Pionteck, Jürgen
    Glass transitions, melting, crystallization, and the isotropization of polymers are connected with changes in the density, respectively the specific volume (Vsp), which can be analyzed by dilatometric methods. Here, the pressure dependence of such transitions is determined by pressure volume temperature (pVT) analysis for different thermoplastic polymers in the pressure range of 10 to 200 MPa, and the temperature range from room temperature to 350 °C. The values for ambient pressure are extrapolated. It is shown that polymer transitions always increase with pressure, and that the melting temperature and glass transition temperature are nearly linearly dependent on pressure. This information, as well as the observed density changes with pressure and temperature, is very important for the processing of thermoplastics, including their simulation, as well as for the thermodynamic interpretations of the transition’s nature.