Search Results

Now showing 1 - 3 of 3
  • Item
    Ultrafast structural changes in SrTiO3 due to a superconducting phase transition in a YBa2Cu3O7 top layer
    (College Park, MD : Institute of Physics Publishing, 2010) Lübcke, A.; Zamponi, F.; Loetzsch, R.; Kämpfer, T.; Uschmann, I.; Große, V.; Schmidl, F.; Köttig, T.; Thürk, M.; Schwoerer, H.; Förster, E.; Seidel, P.; Sauerbrey, R.
    We investigate the structural response of SrTiO3 when Cooper pairs are broken in an epitaxially grown YBa2Cu3O 7 top layer due to both heating and optical excitation. The crystal structure is investigated by static, temperaturedependent and time-resolved x-ray diffraction. In the static case, a large strain field in SrTiO3 is formed in the proximity of the onset of the superconducting phase in the top layer, suggesting a relationship between both effects. For the time-dependent studies, we likewise find a large fraction of the probed volume of the SrTiO3 substrate strained if the top layer is superconducting. Upon optical breaking of Cooper pairs, the observed width of the rocking curve is reduced and its position is slightly shifted towards smaller angles. The dynamical theory of x-ray diffraction is used to model the measured rocking curves. We find that the thickness of the strained layer is reduced by about 200 nm on a sub-ps to ps timescale, but the strain value at the interface between SrTiO3 and YBa2Cu3O7 remains unaffected. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Optical properties of individual site-controlled Ge quantum dots
    (Melville, NY : American Inst. of Physics, 2015) Grydlik, Martyna; Brehm, Moritz; Tayagaki, Takeshi; Langer, Gregor; Schmidt, Oliver G.; Schäffler, Friedrich
    We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem. This work was supported by the Austrian Science Funds (FWF) via Schrödinger Scholarship J3328-N19 and the Project Nos. F2502-N17 and F2512-N17 of SFB025: IRON. M.G. and O.G.S. acknowledge support from the Center for Advancing Electronics Dresden, CfAED. T.T. was supported by the ICR-KU International Short-term Exchange Program for Young Researchers. The authors thank T. Fromherz and F. Hackl for helpful discussions.
  • Item
    Tuning functional properties by plastic deformation
    (Milton Park : Taylor & Francis, 2009) Kwon, A.R.; Neu, V.; Matias, V.; Hänisch, J.; Hühne, R.; Freudenberger, J.; Holzapfel, B.; Schultz, L.; Fähler, S.
    It is well known that a variation of lattice constants can strongly influence the functional properties of materials. Lattice constants can be influenced by external forces; however, most experiments are limited to hydrostatic pressure or biaxial stress. Here, we present an experimental approach that imposes a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A substrate made of a ductile metal alloy covered with a biaxially oriented MgO layer is used as a template for growth of epitaxial films. By applying an external plastic strain, we break the symmetry within the substrate plane compared to the as-deposited state. The consequences of 2% plastic strain are examined for an epitaxial hard magnetic Nd2Fe14B film and are found to result in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is a versatile method to study the influence of large plastic strain on various materials, as the MgO(001) layer used is a common substrate for epitaxial growth.