Search Results

Now showing 1 - 2 of 2
  • Item
    Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts
    (London : RSC Publ., 2015) Prymak, Iuliia; Kalevaru, Venkata Narayana; Wohlrab, Sebastian; Martin, Andreas
    CexZr1−xO2 (x = 0, 0.2, 0.5, 0.8 and 1.0) solids were prepared by a citrate method and characterized by various techniques such as N2-adsorption (BET-SA), XRD, XPS, TEM, H2-TPR, NH3- and CO2-TPD. The catalytic performance of these solids was evaluated for the direct synthesis of diethyl carbonate (DEC) from ethanol and CO2 in continuous mode using a plug-flow reactor (PFR). According to thermodynamic data, the reaction is favourable at low reaction temperatures and high reaction pressures. Thus, the catalytic experiments were carried out at reaction temperatures ranging from 80 to 180 °C and at reaction pressures from 80 to 180 bar. The CexZr1−xO2 catalysts exhibited significant differences in their performance mainly depending on (i) their Ce : Zr ratio and (ii) the different acid–base characteristics. Among the series Ce0.8Zr0.2O2 (C80Z) and Ce0.5Zr0.5O2 (C50Z) catalysts displayed the most efficient performance. Moreover, C80Z, pretreated at 700 °C, yielded DEC at the equilibrium conversion level of YDEC ~ 0.7% at 140 °C and 140 bar at a CO2 : ethanol ratio of 6 : 1 at a LHSV of 42 Lliq kgcat−1 h−1.
  • Item
    Energy intensity and global warming potential of corn grain ethanol production in Wisconsin (USA)
    (Hoboken, NJ : Wiley-Blackwell Publishing Ltd, 2013) Kraatz, S.; Sinistore, J.C.; Reinemann, D.J.
    Increasing demand for renewable alternative fuels, such as ethanol, is driven by decreasing availability of fossil resources and increasing attention to climate change. Life cycle assessment (LCA) is the tool used to evaluate environmental impacts, such as energy intensity (EI) and global warming potential (GWP), from ethanol production, but the application of this tool varies greatly. The goals of this study were to enumerate the life cycle EI, net energy value (NEV), and GWP of corn grain ethanol production in Wisconsin, to explore ethanol production scenarios which differ at the treatment of the whole stillage (WS) coproduct, and to evaluate the various solutions to the multifunctionality problem which arises in LCA. In Scenario 1, all suggested solutions to the multifunctionality problem are considered by transforming WS into the animal feed dried distillers grains with solubles (DDGS). Scenario 2 avoids allocation using an integrated system which recycles the WS with an anaerobic biodigester and a combined heat and power (CHP) plant to provide electricity and steam to the ethanol refinery and returns the residue to the land as fertilizer. Based on the Scenario 1 analysis, we recommend the use of the subdivision (SD) solution to the multifunctionality problem because it enables clear comparisons between different ethanol production systems, it distinguishes between the environmental impacts from ethanol production and coproduct processing and it reduces the number of assumptions in the LCA calculations. From the comparison of both scenarios, we find that recycling the WS into electricity, heat, and fertilizer is the most environmentally beneficial coproduct use because it results in a 54% lower EI and a 67% lower GWP than the processing of WS into DDGS.