Search Results

Now showing 1 - 3 of 3
  • Item
    Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste
    (Amsterdam : Elsevier, 2016) Pleissner, Daniel; Demichelis, Francesca; Mariano, Silvia; Fiore, Silvia; Gutiérrez, Ivette Michelle Navarro; Schneider, Roland; Venus, Joachim
    This study introduces to a one-step process for the fermentative production of L(+)-lactic acid from mixed restaurant food waste. Food waste was used as carbon and nitrogen source in simultaneous saccharification and fermentation (SSF) using Lactobacillus sp. or Streptococcus sp. strains for L(+)-lactic acid production. Waste consisted of (w/w) 33.5% starch, 14.8% proteins, 12.9% fat and 8.5% free sugars. Lactobacillus sp. strains showed a productivity of 0.27–0.53 g L−1 h−1 and a yield of 0.07–0.14 g g−1 of theoretically available sugars, while Streptococcus sp. more efficiently degraded the food waste material and produced lactic acid at a maximum rate of 2.16 g L−1 h−1 and a yield of 0.81 g g−1. For SSF, no enzymes were added or other hydrolytic treatments were carried out. Outcomes revealed a linear relationship between lactic acid concentration and solid-to-liquid ratio when Streptococcus sp. was applied. Statistically, from a 20% (w/w) dry food waste blend 52.4 g L−1 lactic acid can be produced. Experimentally, 58 g L−1 was achieved in presence of 20% (w/w), which was the highest solid-to-liquid ratio that could be treated using the equipment applied. Irrespective if SSF was performed at laboratory or technical scale, or under non-sterile conditions, Streptococcus sp. efficiently liquefied food waste and converted the released nutrients directly into lactic acid without considerable production of other organic acids, such as acetic acid. Downstream processing including micro- and nanofiltration, electrodialysis, chromatography and distillation gave a pure 702 g L−1 L(+)-lactic acid formulation.
  • Item
    Upgrading pasta wastes through lactic acid fermentations
    (Amsterdam : Elsevier, 2022) López-Gómez, José Pablo; Unger, Peter; Schneider, Roland; Pierrard, Marie-Aline; Venus, Joachim
    During its production process, every kilogram of pasta manufactured generates about 23 g of pasta wastes (PW). Considering the global pasta production, there are about 376 kilotonnes of PW produced every year. In this work, PW were characterised and used as the substrate in lactic acid (LA) fermentations. Enzymatic hydrolysis of 200 g/L of PW allowed for the liberation of sugars with a yield 0.81 gs/gdryPW. After the screening of several B. coagulans, the strain A559 was selected for experiments at the lab and pilot scales. Two fermentation modes were tested during lab scale experiments namely, simultaneous saccharification and fermentation and sequential hydrolysis and fermentation with the latter showing higher yields. The process was scaled up to 50 L where a LA concentration of 47.67 g/L and yield of 0.67 gLA/gdrydPW were achieved.
  • Item
    Production of lactic acid from pasta wastes using a biorefinery approach
    (London : BioMed Central, 2022) Marzo-Gago, Cristina; Venus, Joachim; López-Gómez, José Pablo
    A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.