Search Results

Now showing 1 - 2 of 2
  • Item
    Behavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment
    (College Park, MD : Institute of Physics Publishing, 2010) Wiese, R.; Sushkov, V.; Kersten, H.; Ikkurthi, V.R.; Schneider, R.; Hippler, R.
    The behavior of a single porous particle with a diameter of 250 μm levitating in a radiofrequency (RF) plasma under pulsed argon ion beam bombardment was investigated. The motion of the particle under the action of the ion beam was observed to be an oscillatory motion. The Fourier-analyzed motion is dominated by the excitation frequency of the pulsed ion beam and odd higher harmonics, which peak near the resonance frequency. The appearance of even harmonics is explained by a variation of the particles's charge depending on its position in the plasma sheath. The Fourier analysis also allows a discussion of neutral and ion forces. The particle's charge was derived and compared with theoretical estimates based on the orbital motion-limited (OML) model using also a numerical simulation of the RF discharge. The derived particle's charge is about 7-15 times larger than predicted by the theoretical models. This difference is attributed to the porous structure of the particle. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Mathematical fundamentals of modern linear optics
    (New York, NY : Hindawi, 2012) Gitin, A.V.
    All known quantum-mechanical approaches to wave and statistical optics are united into a single theory, using Feynman's path integral as a fundamental principle. In short-wave approximations, this principle, the Fourier transformations, and concepts of the theory reproduce Fermat's principle, the Legendre transformations, and concepts of Hamilton's optics and radiometry in a one-to-one fashion.