Search Results

Now showing 1 - 4 of 4
  • Item
    Free energy, free entropy, and a gradient structure for thermoplasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander
    In the modeling of solids the free energy, the energy, and the entropy play a central role. We show that the free entropy, which is defined as the negative of the free energy divided by the temperature, is similarly important. The derivatives of the free energy are suitable thermodynamical driving forces for reversible (i.e. Hamiltonian) parts of the dynamics, while for the dissipative parts the derivatives of the free entropy are the correct driving forces. This difference does not matter for isothermal cases nor for local materials, but it is relevant in the non-isothermal case if the densities also depend on gradients, as is the case in gradient thermoplasticity. Using the total entropy as a driving functional, we develop gradient structures for quasistatic thermoplasticity, which again features the role of the free entropy. The big advantage of the gradient structure is the possibility of deriving time-incremental minimization procedures, where the entropy-production potential minus the total entropy is minimized with respect to the internal variables and the temperature. We also highlight that the usage of an auxiliary temperature as an integrating factor in Yang/Stainier/Ortiz "A variational formulation of the coupled thermomechanical boundary-value problem for general dissipative solids" (J. Mech. Physics Solids, 54, 401-424, 2006) serves exactly the purpose to transform the reversible driving forces, obtained from the free energy, into the needed irreversible driving forces, which should have been derived from the free entropy. This reconfirms the fact that only the usage of the free entropy as driving functional for dissipative processes allows us to derive a proper variational formulation.
  • Item
    Variational approaches and methods for dissipative material models with multiple scales
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander
    In a first part we consider evolutionary systems given as generalized gradient systems and discuss various variational principles that can be used to construct solutions for a given system or to derive the limit dynamics for multiscale problems. These multiscale limits are formulated in the theory of evolutionary Gamma-convergence. On the one hand we consider the a family of viscous gradient system with quadratic dissipation potentials and a wiggly energy landscape that converge to a rate-independent system. On the other hand we show how the concept of Balanced-Viscosity solution arise as in the vanishing-viscosity limit. As applications we discuss, first, the evolution of laminate microstructures in finite-strain elastoplasticity and, second, a two-phase model for shape-memory materials, where H-measures are used to construct the mutual recovery sequences needed in the existence theory.
  • Item
    Balanced-Viscosity solutions for multi-rate systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    Several mechanical systems are modeled by the static momentum balance for the displacement u coupled with a rate-independent flow rule for some internal variable z. We consider a class of abstract systems of ODEs which have the same structure, albeit in a finite-dimensional setting, and regularize both the static equation and the rate-independent flow rule by adding viscous dissipation terms with coefficients α and , where 0<<1 and α>0 is a fixed parameter. Therefore for α different from 1 the variables u and z have different relaxation rates. We address the vanishing-viscosity analysis as tends to 0 in the viscous system. We prove that, up to a subsequence, (reparameterized) viscous solutions converge to a parameterized curve yielding a Balanced Viscosity solution to the original rate-independent system and providing an accurate description of the system behavior at jumps. We also give a reformulation of the notion of Balanced Viscosity solution in terms of a system of subdifferential inclusions, showing that the viscosity in u and the one in z are involved in the jump dynamics in different ways, according to whether α >1, α=1, or 0<α<1.
  • Item
    Exploring families of energy-dissipation landscapes via tilting: three types of EDP convergence
    (Berlin ; Heidelberg : Springer, 2021) Mielke, Alexander; Montefusco, Alberto; Peletier, Mark A.
    We introduce two new concepts of convergence of gradient systems (Q,Eε,Rε) to a limiting gradient system (Q,E0,R0). These new concepts are called ‘EDP convergence with tilting’ and ‘contact–EDP convergence with tilting.’ Both are based on the energy-dissipation-principle (EDP) formulation of solutions of gradient systems and can be seen as refinements of the Gamma-convergence for gradient flows first introduced by Sandier and Serfaty. The two new concepts are constructed in order to avoid the ‘unnatural’ limiting gradient structures that sometimes arise as limits in EDP convergence. EDP convergence with tilting is a strengthening of EDP convergence by requiring EDP convergence for a full family of ‘tilted’ copies of (Q,Eε,Rε). It avoids unnatural limiting gradient structures, but many interesting systems are non-convergent according to this concept. Contact–EDP convergence with tilting is a relaxation of EDP convergence with tilting and still avoids unnatural limits but applies to a broader class of sequences (Q,Eε,Rε). In this paper, we define these concepts, study their properties, and connect them with classical EDP convergence. We illustrate the different concepts on a number of test problems.