Search Results

Now showing 1 - 10 of 34
Loading...
Thumbnail Image
Item

Ultrafast multi-electron dynamics studied with THz-field streaking

2018, Krikunova, M., Klimešová, E., Kulyk, O., Oelze, T., Schütte, B., Gebert, T., Andreasson, J., Silaev, A.A.

This article has no abstract.

Loading...
Thumbnail Image
Item

X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

2018, Alkhimova, M.A., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Pikuz, S.A., Nishiuchi, M., Sakaki, H., Pirozhkov, A.S., Sagisaka, S., Dover, N.P., Kondo, Ko., Ogura, K., Fukuda, Y., Kiriyama, H., Esirkepov, T., Bulanov, S V., Andreev, A., Kando, M., Zhidkov, A., Nishitani, K., Miyahara, T., Watanabe, Y., Kodama, R., Kondo, K.

We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

Loading...
Thumbnail Image
Item

Intracycle interference in ionization of Ar by a laser assisted XUV pulse

2017, Arbó, D.G., López, S. D., Kubin, M., Hummert, J., Vrakking, M.J.J., Kornilov, O.

Synopsis We present a theoretical and experimental study of the subcycle interference in laser assisted XUV ionization of Ar atoms. Averaging over the focal volume happens to blur the intracycle interference, which thus cannot be measured directly. We show that even at these conditions, the intracycle interference can be obtained through the subtraction of two different angle and energy-resolved distributions at slightly different laser intensities.

Loading...
Thumbnail Image
Item

A compact laboratory transmission X-ray microscope for the water window

2013, Legall, H., Stiel, H., Blobel, G., Seim, C., Baumann, J., Yulin, S., Esser, D., Hoefer, M., Wiesemann, U., Wirtz, M., Schneider, G., Rehbein, S., Hertz, H.M.

In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.

Loading...
Thumbnail Image
Item

Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses

2013, Rosenfeld, A., Höhm, S., Bonse, J., Krüger, J.

The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

Loading...
Thumbnail Image
Item

Preparation of clay mineral samples for high resolution x-ray imaging

2013, Abbati, G., Seim, C., Legall, H., Stiel, H., Thomas, N., Wilhein, T.

In the development of optimum ceramic materials for plastic forming, it is of fundamental importance to gain insight into the compositions of the clay minerals. Whereas spectroscopic methods are adequate for determining the elemental composition of a given sample, a knowledge of the spatial composition, together with the shape and size of the particles leads to further, valuable insight. This requires an imaging technique such as high resolution X-ray microscopy. In addition, fluorescence spectroscopy provides a viable element mapping technique. Since the fine particle fraction of the materials has a major effect on physical properties like plasticity, the analysis is focused mainly on the smallest particles. To separate these from the bigger agglomerates, the raw material has to pass through several procedures like centrifugation and filtering. After that, one has to deposit a layer of appropriate thickness on to a suitable substrate. These preparative techniques are described here, starting from the clay mineral raw materials and proceeding through to samples that are ready to analyze. First results using high resolution x-ray imaging are shown.

Loading...
Thumbnail Image
Item

Photoelectron holography in strong optical and dc electric fields

2014, Stodolna, A., Huismans, Y., Rouzée, A., Lépine, F., Vrakking, M.J.J.

The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.

Loading...
Thumbnail Image
Item

Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics

2013, Grunwald, R., Das, S.K., Debroy, A., McGlynn, E., Messaoudi, H.

Nonlinear excitation mechanisms of plasmons and their influence on femtosecond-laser induced sub-wavelength ripple generation on dielectric and semiconducting transparent materials are discussed. The agreement of theoretical and experimental data indicates the relevance of the model.

Loading...
Thumbnail Image
Item

X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations

2017, Dalimier, E., Ya Faenov, A., Oks, E., Angelo, P., Pikuz, T.A., Fukuda, Y., Andreev, A., Koga, J., Sakaki, H., Kotaki, H., Pirozhkov, A., Hayashi, Y., Skobelev, I.Yu., Pikuz, S.A., Kawachi, T., Kando, M., Kondo, K., Zhidkov, A., Tubman, E., Butler, N.M.H., Dance, R.J., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., McKenna, P., Woolsey, N., Kodama, R.

We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.

Loading...
Thumbnail Image
Item

Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS

2014, McFarland, B.K., Berrah, N., Bostedt, C., Bozek, J., Bucksbaum, P.H., Castagna, J.C., Coffee, R.N., Cryan, J.P., Fang, L., Farrell, J.P., Feifel, R., Gaffney, K.J., Glownia, J.M., Martinez, T.J., Miyabe, S., Mucke, M., Murphy, B., Natan, A., Osipov, T., Petrovic, V.S., Schorb, S., Schultz, T., Spector, L.S., Swiggers, M., Tarantelli, F., Tenney, I., Wang, S., White, J.L., White, W., Gühr, M.

Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.