Search Results

Now showing 1 - 2 of 2
  • Item
    Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics
    (Basel : MDPI, 2021) ZuHone, John; Ehlert, Kristian; Weinberger, Rainer; Pfrommer, Christoph
    Radio relics are arc-like synchrotron sources at the periphery of galaxy clusters, produced by cosmic-ray electrons in a µG magnetic field, which are believed to have been (re-)accelerated by merger shock fronts. However, not all relics appear at the same location as shocks as seen in the X-ray. In a previous work, we suggested that the shape of some relics may result from the pre-existing spatial distribution of cosmic-ray electrons, and tested this hypothesis using simulations by launching AGN jets into a cluster atmosphere with sloshing gas motions generated by a previous merger event. We showed that these motions could transport the cosmic ray-enriched material of the AGN bubbles to large radii and stretch it in a tangential direction, producing a filamentary shape resembling a radio relic. In this work, we improve our physical description for the cosmic rays by modeling them as a separate fluid which undergoes diffusion and Alfvén losses. We find that, including this additional cosmic ray physics significantly diminishes the appearance of these filamentary features, showing that our original hypothesis is sensitive to the modeling of cosmic ray physics in the intracluster medium.
  • Item
    Numerical Investigations of Catastrophe in Coronal Magnetic Configuration Triggered by Newly Emerging Flux
    (London : Institute of Physics Publ., 2022) Chen, Yuhao; Ye, Jing; Mei, Zhixing; Shen, Chengcai; Roussev, Ilia I.; Forbes, Terry G.; Lin, Jun; Ziegler, Udo
    We performed 2D magnetohydrodynamical numerical experiments to study the response of the coronal magnetic configuration to the newly emerging magnetic flux. The configuration includes an electric-current-carrying flux rope modeling the prominence floating in the corona and the background magnetic field produced by two separated magnetic dipoles embedded in the photosphere. Parameters for one dipole are fixed in space and time to model the quiet background, and those for another one are time dependent to model the new flux. These numerical experiments duplicate important results of the analytic solution but also reveal new results. Unlike previous works, the configuration here possesses no symmetry, and the flux rope could move in any direction. The non-force-free environment causes the deviation of the flux rope equilibrium in the experiments from that determined in the analytic solution. As the flux rope radius decreases, the equilibrium could be found, and it evolves quasi-statically until the flux rope reaches the critical location at which the catastrophe occurs. As the radius increases, no equilibrium exists at all. During the catastrophe, two current sheets form in different ways. One forms as the surrounding closed magnetic field is stretched by the catastrophe, and another one forms as the flux rope squeezes the magnetic field nearby. Although reconnection happens in both the current sheets, it erases the first one quickly and enhances the second simultaneously. These results indicate the occurrence of the catastrophe in asymmetric and non-force-free environment, and the non-radial motion of the flux rope following the catastrophe.