Search Results

Now showing 1 - 2 of 2
  • Item
    Solving the puzzle of hierarchical martensitic microstructures in NiTi by (111)-oriented epitaxial films
    (Amsterdam : Elsevier, 2023) Lünser, Klara; Undisz, Andreas; Wagner, Martin F.-X.; Nielsch, Kornelius; Fähler, Sebastian
    The martensitic microstructure decides on the functional properties of shape memory alloys. However, for the most commonly used alloy, NiTi, it is still unclear how its microstructure is built up because the analysis is hampered by grain boundaries of polycrystalline samples. Here, we eliminate grain boundaries by using epitaxially grown films in (111)B2 orientation. By combining scale-bridging microscopy with integral inverse pole figures, we solve the puzzle of the hierarchical martensitic microstructure. We identify two martensite clusters as building blocks and three kinds of twin boundaries. Nesting them at different length scales explains why habit plane variants with ⟨011⟩B19' twin boundaries and {942} habit planes are dominant; but also some incompatible interfaces occur. Though the observed hierarchical microstructure agrees with the phenomenological theory of martensite, the transformation path decides which microstructure forms. The combination of local and global measurements with theory allows solving the scale bridging 3D puzzle of the martensitic microstructure in NiTi exemplarily for epitaxial films.
  • Item
    Modulated martensite: Why it forms and why it deforms easily
    (Milton Park : Taylor & Francis, 2011) Kaufmann, S.; Niemann, R.; Thersleff, T.; Rößler, U.K.; Heczko, O.; Buschbeck, J.; Holzapfel, B.; Schultz, L.; Fähler, S.
    Diffusionless phase transitions are at the core of the multifunctionality of (magnetic) shape memory alloys, ferroelectrics and multiferroics. Giant strain effects under external fields are obtained in low symmetric modulated martensitic phases. We outline the origin of modulated phases, their connection with tetragonal martensite and consequences owing to their functional properties by analysing the martensitic microstructure of epitaxial Ni–Mn–Ga films from the atomic to the macroscale. Geometrical constraints at an austenite–martensite phase boundary act down to the atomic scale. Hence, a martensitic microstructure of nanotwinned tetragonal martensite can form. Coarsening of twin variants can reduce twin boundary energy, a process we could observe from the atomic to the millimetre scale. Coarsening is a fractal process, proceeding in discrete steps by doubling twin periodicity. The collective defect energy results in a substantial hysteresis, which allows the retention of modulated martensite as a metastable phase at room temperature. In this metastable state, elastic energy is released by the formation of a 'twins within twins' microstructure that can be observed from the nanometre to the millimetre scale. This hierarchical twinning results in mesoscopic twin boundaries. Our analysis indicates that mesoscopic boundaries are broad and diffuse, in contrast to the common atomically sharp twin boundaries of tetragonal martensite. We suggest that the observed extraordinarily high mobility of such mesoscopic twin boundaries originates from their diffuse nature that renders pinning by atomistic point defects ineffective.