Search Results

Now showing 1 - 10 of 10
  • Item
    Kinetics versus thermodynamics of the metal incorporation in molecular beam epitaxy of (InxGa1−x)2O3
    (New York : American Institute of Physics, 2016) Vogt, Patrick; Bierwagen, Oliver
    We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InxGa1−x)2O3 for 0 ≤ x ≤ 1. We measured the growth rate of the alloy in situ by laser reflectrometry as a function of growth temperature T G for different metal-to-oxygen flux ratios r Me, and nominal In concentrations x nom in the metal flux. We determined ex situ the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration x shows a strong dependence on the growth parameters T G, r Me, and x nom whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼μm3 x does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by Ga2O desorption the same way as during Ga2O 3 growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low T G and/or excessively low r Me kinetically enables In incorporation into (InxGa1−x)2O3. This study may help growing high-quality ternary compounds (InxGa1−x)2O3 allowing band gap engineering over the range of 2.7–4.7 eV.
  • Item
    Growth of crystalline phase change materials by physical deposition methods
    (Abingdon : Taylor & Francis Group, 2017) Boschker, Jos E.; Calarco, Raffaella
    Phase change materials are a technologically important materials class and are used for data storage in rewritable DVDs and in phase change random access memory. Furthermore, new applications for phase change materials are emerging. Phase change materials with a high structural quality, such as offered by epitaxial films, are needed in order to study the fundamental properties of phase change materials and to improve our understanding of this materials class. Here, we review the progress made in the growth of crystalline phase change materials by physical methods, such as molecular beam epitaxy, sputtering, and pulsed laser deposition. First, we discuss the difference and similarities between these physical deposition methods and the crystal structures of Ge2Sb2Te5, the prototype phase change material. Next, we focus on the growth of epitiaxial GST films on (0 0 1)- and (1 1 1)-oriented substrates, leading to the conclusion that (1 1 1)-oriented substrates are preferred for the growth of phase change materials. Finally, the growth of GeTe/Sb2Te3 superlattices on amorphous and single crystalline substrates is discussed.
  • Item
    InN nanowires: Growth and optoelectronic properties
    (Basel : MDPI AG, 2012) Calarco, R.
    An overview on InN nanowires, fabricated using either a catalyst-free molecular beam epitaxy method or a catalyst assisted chemical vapor deposition process, is provided. Differences and similarities of the nanowires prepared using the two techniques are presented. The present understanding of the growth and of the basic optical and transport properties is discussed.
  • Item
    Characterization of L21 order in Co2FeSi thin films on GaAs
    (Bristol : Institute of Physics Publishing, 2013) Jenichen, B.; Hentschel, T.; Herfort, J.; Kong, X.; Trampert, A.; Zizak, I.
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.
  • Item
    GaN-based radial heterostructure nanowires grown by MBE and ALD
    (Bristol : Institute of Physics Publishing, 2013) Lari, L.; Ross, I.M.; Walther, T.; Black, K.; Cheze, C.; Geelhaar, L.; Riechert, H.; Chalker, P.R.
    A combination of molecular beam epitaxy (MBE) and atomic layer deposition (ALD) was adopted to fabricate GaN-based core/shell NW structures. ALD was used to deposit a HfO2 shell of onto the MBE grown GaN NWs. Electron transparent samples were prepared by focussed ion beam methods and characterized using state-of-the-art analytical transmission and scanning transmission electron microscopy. The polycrystalline coating was found to be uniform along the whole length of the NWs. Photoluminescence and Raman spectroscopy analysis confirms that the HfO2 ALD coating does not add any structural defect when deposited on the NWs.
  • Item
    Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy
    (Melville, NY : AIP, 2023) Egbo, Kingsley; Luna, Esperanza; Lähnemann, Jonas; Hoffmann, Georg; Trampert, Achim; Grümbel, Jona; Kluth, Elias; Feneberg, Martin; Goldhahn, Rüdiger; Bierwagen, Oliver
    By employing a mixed SnO2 + Sn source, we demonstrate suboxide molecular beam epitaxy (S-MBE) growth of phase-pure single-crystalline metastable SnO (001) thin films on Y-stabilized ZrO2 (001) substrates at a growth rate of ∼1.0 nm/min without the need for additional oxygen. These films grow epitaxially across a wide substrate temperature range from 150 to 450 °C. Hence, we present an alternative pathway to overcome the limitations of high Sn or SnO2 cell temperatures and narrow growth windows encountered in previous MBE growth of metastable SnO. In situ laser reflectometry and line-of-sight quadrupole mass spectrometry were used to investigate the rate of SnO desorption as a function of substrate temperature. While SnO ad-molecule desorption at TS = 450 °C was growth-rate limiting, the SnO films did not desorb at this temperature after growth in vacuum. The SnO (001) thin films are transparent and unintentionally p-type doped, with hole concentrations and mobilities in the range of 0.9-6.0 × 1018 cm-3 and 2.0-5.5 cm2 V-1 s-1, respectively. These p-type SnO films obtained at low substrate temperatures are promising for back-end-of-line (BEOL) compatible applications and for integration with n-type oxides in pn heterojunctions and field-effect transistors.
  • Item
    Substrate-orientation dependence of β -Ga2O3 (100), (010), (001), and (2 ̄ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
    (Melville, NY : AIP Publ., 2020) Mazzolini, P.; Falkenstein, A.; Wouters, C.; Schewski, R.; Markurt, T.; Galazka, Z.; Martin, M.; Albrecht, M.; Bierwagen, O.
    We experimentally demonstrate how In-mediated metal-exchange catalysis (MEXCAT) allows us to widen the deposition window for β-Ga2O3 homoepitaxy to conditions otherwise prohibitive for its growth via molecular beam epitaxy (e.g., substrate temperatures ≥800 °C) on the major substrate orientations, i.e., (010), (001), (2⎯⎯01), and (100) 6°-offcut. The obtained crystalline qualities, surface roughnesses, growth rates, and In-incorporation profiles are shown and compared with different experimental techniques. The growth rates, Γ, for fixed growth conditions are monotonously increasing with the surface free energy of the different orientations with the following order: Γ(010) > Γ(001) > Γ(2⎯⎯01) > Γ(100). Ga2O3 surfaces with higher surface free energy provide stronger bonds to the surface ad-atoms or ad-molecules, resulting in decreasing desorption, i.e., a higher incorporation/growth rate. The structural quality in the case of (2⎯⎯01), however, is compromised by twin domains due to the crystallography of this orientation. Notably, our study highlights β-Ga2O3 layers with high structural quality grown by MEXCAT-MBE not only in the most investigated (010) orientation but also in the (100) and (001) ones. In particular, MEXCAT on the (001) orientation results in both growth rate and structural quality comparable to the ones achievable with (010), and the limited incorporation of In associated with the MEXCAT deposition process does not change the insulating characteristics of unintentionally doped layers. The (001) surface is therefore suggested as a valuable alternative orientation for devices.
  • Item
    Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O
    (Melville, NY : AIP Publ., 2020) Hoffmann, Georg; Budde, Melanie; Mazzolini, Piero; Bierwagend, Oliver
    Sources of suboxides, providing several advantages over metal sources for the molecular beam epitaxy (MBE) of oxides, are conventionally realized by decomposing the corresponding oxide charge at extreme temperatures. By quadrupole mass spectrometry of the direct flux from an effusion cell, we compare this conventional approach to the reaction of a mixed oxide + metal charge as a source for suboxides with the examples of SnO2 + Sn → 2 SnO and Ga2O3 + 4 Ga → 3 Ga2O. The high decomposition temperatures of the pure oxide charge were found to produce a high parasitic oxygen background. In contrast, the mixed charges reacted at significantly lower temperatures, providing high suboxide fluxes without additional parasitic oxygen. For the SnO source, we found a significant fraction of Sn2O2 in the flux from the mixed charge that was basically absent in the flux from the pure oxide charge. We demonstrate the plasma-assisted MBE growth of SnO2 using the mixed Sn + SnO2 charge to require less activated oxygen and a significantly lower source temperature than the corresponding growth from a pure Sn charge. Thus, the sublimation of mixed metal + oxide charges provides an efficient suboxide source for the growth of oxides by MBE. Thermodynamic calculations predict this advantage for further oxides as well, e.g., SiO2, GeO2, Al2O3, In2O3, La2O3, and Pr2O3 © 2020 Author(s).
  • Item
    Large-area van der Waals epitaxy and magnetic characterization of Fe3GeTe2 films on graphene
    (Bristol : IOP Publ., 2021) Lopes, J. Marcelo J.; Czubak, Dietmar; Zallo, Eugenio; Figueroa, Adriana I.; Guillemard, Charles; Valvidares, Manuel; Rubio-Zuazo, Juan; López-Sanchéz, Jesús; Valenzuela, Sergio O.; Hanke, Michael; Ramsteiner, Manfred
    Scalable fabrication of magnetic 2D materials and heterostructures constitutes a crucial step for scaling down current spintronic devices and the development of novel spintronic applications. Here, we report on van der Waals (vdW) epitaxy of the layered magnetic metal Fe3GeTe2 (FGT) - a 2D crystal with highly tunable properties and a high prospect for room temperature ferromagnetism (FM) - directly on graphene by employing molecular beam epitaxy. Morphological and structural characterization confirmed the realization of large-area, continuous FGT/graphene heterostructure films with stable interfaces and good crystalline quality. Furthermore, magneto-transport and x-ray magnetic circular dichroism investigations confirmed a robust out-of-plane FM in the layers, comparable to state-of-the-art exfoliated flakes from bulk crystals. These results are highly relevant for further research on wafer-scale growth of vdW heterostructures combining FGT with other layered crystals such as transition metal dichalcogenides for the realization of multifunctional, atomically thin devices. © 2021 The Author(s).
  • Item
    Molecular beam epitaxy of GeTe-Sb2Te3 phase change materials studied by X-ray diffraction
    (Berlin : Humboldt-Universität zu Berlin, 2010) Shayduk, Roman
    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied \emph{in situ} using reflection high energy electron diffraction (RHEED).