Search Results

Now showing 1 - 5 of 5
  • Item
    A compact laboratory transmission X-ray microscope for the water window
    (Bristol : Institute of Physics Publishing, 2013) Legall, H.; Stiel, H.; Blobel, G.; Seim, C.; Baumann, J.; Yulin, S.; Esser, D.; Hoefer, M.; Wiesemann, U.; Wirtz, M.; Schneider, G.; Rehbein, S.; Hertz, H.M.
    In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.
  • Item
    Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity
    (Austin, Tex. : Landes Bioscience, 2021) Faramarzi, Fatemeh; Zafari, Parisa; Alimohammadi, Mina; Moonesi, Mohammadreza; Rafiei, Alireza; Bekeschus, Sander
    Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
  • Item
    H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine
    (Austin, Tex. : Landes Bioscience, 2021) Schütz, Clarissa S.; Stope, Matthias B.; Bekeschus, Sander
    At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
  • Item
    Impact of cold atmospheric pressure plasma processing on storage of blueberries
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Pathak, Namrata; Grossi Bovi, Graziele; Limnaios, Athanasios; Fröhling, Antje; Brincat, Jean-Pierre; Taoukis, Petros; Valdramidis, Vasilis P.; Schlüter, Oliver
    The current study aimed at investigating the impact of nitrogen (N)-generated cold atmospheric pressure plasma (CAPP) treatment on blueberries focusing on the overall impact on berry quality and microbial load along a storage period of 10 days. Blueberries were treated for 0 (control), 5, and 10 min. Assessment of fruit quality (°Bx, ascorbic acid, anthocyanins, titratable acidity, elasticity, and color parameters) and microbial analysis was performed. Results showed that CAPP treatment was more effective in inhibiting bacterial growth than fungal growth and during the subsequent storage, the quality parameters did not differ significantly from the control, under the same conditions. The study supports N-generated CAPP as a disinfection technique to reduce microbial load in blueberries without significantly impacting most quality parameters. Practical applications: Over the last decades, foodborne illness outbreaks around the world have been associated with berries. For that reason, due to the increasing consumption of berries it is paramount to study technologies that can eliminate pathogens responsible for such outbreaks. Cold atmospheric pressure plasma (CAPP) can be a promising technology to be used as an alternative to traditional decontamination methods of food. In this context, this study explored the effect and efficiency of this novel technology on reduction of native microflora and its impact on the physical and chemical properties of blueberries treated by nitrogen (N)-generated CAPP with subsequent storage of 10 days. Results of this work confirmed that such technology has high potential application for decontamination of berries without significantly impacting most quality parameters and thereby can be a potential technology for industrial applications. © 2020 The Authors. Journal of Food Processing and Preservation published by Wiley Periodicals LLC.
  • Item
    Evidence of the dominant production mechanism of ammonia in a hydrogen plasma with parts per million of nitrogen
    ([Melville, NY] : American Institute of Physics, 2021) Ellis, J.; Köpp, D.; Lang, N.; van Helden, J. H.
    Absolute ground state atomic hydrogen densities were measured, by the utilization of two-photon absorption laser induced fluorescence, in a low-pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher, the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent contribution arising from the photolysis of an ammonia molecule. At nitrogen admixtures of 5000 ppm, the nascent contribution becomes the dominant contribution at all investigated pressures. Thermal loading experiments were conducted by heating the chamber walls to different temperatures; this showed a decrease in the nascent contributions with increasing temperature. This is explained by considering how the temperature influences recombination coefficients, and from which, it can be stated that the Langmuir-Hinshelwood recombination mechanism is dominant over the Eley-Rideal mechanism.