Search Results

Now showing 1 - 3 of 3
  • Item
    Multiphysics simulations of adaptive metasurfaces at the meta-atom length scale
    (Berlin : de Gruyter, 2020) Meyer, Sebastian; Tan, Zhi Yang; Chigrin, Dmitry N.
    Adaptive metasurfaces (MSs) provide immense control over the phase, amplitude and propagation direction of electromagnetic waves. Adopting phase-change materials (PCMs) as an adaptive medium allows us to tune functionality of MSs at the meta-atom length scale providing full control over MS (re-)programmability. Recent experimental progress in the local switching of PCM-based MSs promises to revolutionize adaptive photonics. Novel possibilities open new challenges, one of which is a necessity to understand and be able to predict the phase transition behavior at the sub-micrometer scale. A meta-atom can be switched by a local deposition of heat using optical or electrical pulses. The deposited energy is strongly inhomogeneous and the resulting phase transition is spatially non-uniform. The drastic change of the material properties during the phase transition leads to time-dependent changes in the absorption rate and heat conduction near the meta-atom. These necessitate a self-consistent treatment of electromagnetic, thermal and phase transition processes. Here, a self-consistent multiphysics description of an optically induced phase transition in MSs is reported. The developed model is used to analyze local tuning of a perfect absorber. A detailed understanding of the phase transition at the meta-atom length scale will enable a purposeful design of programmable adaptive MSs. © 2020 Sebastian Meyer, Dmitry N. Chigrin et al., published by De Gruyter, Berlin/Boston 2020.
  • Item
    The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces
    (Weinheim : Wiley-VCH, 2020) Michel, Ann-Katrin U.; Meyer, Sebastian; Essing, Nicolas; Lassaline, Nolan; Lightner, Carin R.; Bisig, Samuel; Norris, David J.; Chigrin, Dmitry N.
    Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial frequency filtering, but also be transferred to all-dielectric metasurfaces. © 2020 Wiley-VCH GmbH
  • Item
    Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach
    (Weinheim : Wiley-VCH, 2019) Michel, Ann-Katrin U.; Heßler, Andreas; Meyer, Sebastian; Pries, Julian; Yu, Yuan; Kalix, Thomas; Lewin, Martin; Hanss, Julian; De Rose, Angela; Maß, Tobias W.W.; Wuttig, Matthias; Chigrin, Dmitry N.; Taubner, Thomas
    Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim