Search Results

Now showing 1 - 10 of 72
  • Item
    In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Schladitz, A.; Müller, T.; Kaaden, N.; Massling, A.; Kandler, K.; Ebert, M.; Weinbruch, S.; Deutscher, C.; Wiedensohler, A.
    In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.
  • Item
    Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Hofmann, H.; Jäckel, S.; Jaenicke, R.; Knippertz, P.; Lieke, K.; Massling, A.; Petzold, A.; Schladitz, A.; Weinzierl, B.; Wiedensohler, A.; Zorn, S.; Weinbruch, S.
    During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).
  • Item
    How to find bananas in the atmospheric aerosol': New approach for analyzing atmospheric nucleation and growth events
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Wehner, Birgit; Birmili, Wolfram
    We have devised a new search algorithm for secondary particle formation events, or ‘nucleation events’ in data sets of atmospheric particle size distributions. The search algorithm is simple and based on the investigation of 18 integral parameters of the particle size distribution, three of which were found to be most relevant for identifying nucleation events. The algorithm is tested using long-term size distribution data sets of high-size resolution observed at Melpitz, Hohenpeissenberg, and Leipzig, Germany, and Beijing, China, thereby covering a wide range of clean and polluted conditions. By specifying the particular training sets, the method can be used by other researchers with different data sets or different research goals. The same search approach could be applied to identify and analyze other systematic changes in size distribution such as during frontal passages or sand storms. As an example application of the new algorithm, the 50 strongest nucleation events (‘bananas’) at each of the four sites are analyzed statistically in terms of average changes of integral parameters of the particle size distribution.
  • Item
    Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Jäckel, S.; Lieke, K.; Emmel, C.; Müller-Ebert, D.; Ebert, M.; Scheuvens, D.; Schladitz, A.; Šegvić, B.; Wiedensohler, A.; Weinbruch, S.
    A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. This work reports on the aerosol mass concentrations, size distributions and mineralogical composition of the aerosol arriving at Praia. Three dust periods were recorded during the measurements, divided by transitional periods and embedded in maritime-influenced situations. The total suspended particle mass/PM10/PM2.5 were 250/180/74μg/m3 on average for the first dust period (17–21 January) and 250/230/83μg/m3 for the second (24–26 January). The third period (28 January to 2 February) was the most intensive with 410/340/130 μg/m3. Four modes were identified in the size distribution. The first mode (50–70 nm) and partly the second (700–1100 nm) can be regarded as of marine origin, but some dust contributes to the latter. The third mode (2–4 μm) is dominated by advected dust, while the intermittently occurring fourth mode (15–70 μm) may have a local contribution. The dust consisted of kaolinite (dust/maritime period: 35%wt./25%wt.),K-feldspar (20%wt./25%wt.), illite (14%wt./10%wt.), quartz (11%wt./8%wt.), smectites (6%wt./4%wt.), plagioclase (6%wt./1%wt.), gypsum (4%wt./7%wt.), halite (2%wt./17%wt.) and calcite (2%wt./3%wt.).
  • Item
    Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging
    (Milton Park : Taylor & Francis, 2017) Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Von Hoyningen-HUENE, Wolfgang
    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite’s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05–0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR’s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.
  • Item
    Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Ansmann, Albert; MüLLER, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter
    Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  • Item
    Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate
    (Milton Park : Taylor & Francis, 2017) Heese, Birgit; Althausen, Dietrich; Dinter, Tilman; Esselborn, Michael; Müller, Thomas; Tesche, Matthias; Wiegner, Matthias
    Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.
  • Item
    Size distribution and chemical composition of marine aerosols: A compilation and review
    (Milton Park : Taylor & Francis, 2016) Heintzenberg, J.; Covert, D.C.; Van Dingenen, R.
    Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log-normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals.