Search Results

Now showing 1 - 10 of 33
  • Item
    Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Tesche, Matthias; Freudenthaler, Volker; Toledano, Carlos; Wiegner, Matthias; Ansmann, Albert; Althausen, Dietrich; Seefeldner, Meinhard
    The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.
  • Item
    Dust mobilization and aerosol transport from West Africa to Cape Verde - a meteorological overview of SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Tesche, Matthias; Heinold, Bernd; Kandler, Konrad; Toledano, Carlos; Esselborn, Michael
    The second field campaign of the SAharan Mineral dUst experiMent (SAMUM-2) was performed between 15 January and 14 February 2008 at the airport of Praia, Cape Verde, and provided valuable information to study the westward transport of Saharan dust and the mixing with biomass-burning smoke and sea-salt aerosol. Here lidar, meteorological, and particle measurements at Praia, together with operational analyses, trajectories, and satellite and synoptic station data are used to give an overview of the meteorological conditions and to place other SAMUM-2 measurements into a large-scale context. It is demonstrated that wintertime dust conditions at Cape Verde are closely related to the movement and intensification of mid-latitude high-pressure systems and the associated pressure gradients at their southern flanks. These cause dust emission over Mauritania, Mali, and Niger, and subsequent westward transport to Cape Verde within about 1–5 d. Dust emissions often peak around midday, suggesting a relation to daytime mixing of momentum from nocturnal low-level jets to the surface. The dust layer over Cape Verde is usually restricted to the lowest 1.5 km of the atmosphere. During periods with near-surface wind speeds about 5.5 ms−1, a maritime aerosol layer develops which often mixes with dust from above. On most days, the middle levels up to about 5 km additionally contain smoke that can be traced back to sources in southernWest Africa. Above this layer, clean air masses are transported to Cape Verde with the westerly flow at the southern side of the subtropical jet. The penetration of extra-tropical disturbances to low latitudes can bring troposphere-deep westerly flow and unusually clean conditions to the region.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model - Part 1: Model development
    (München : European Geopyhsical Union, 2016) Rusumdar, A.J.; Wolke, R.; Tilgner, A.; Herrmann, H.
    Ambient tropospheric deliquesced particles generally comprise a complex mixture of electrolytes, organic compounds, and water. Dynamic modeling of physical and chemical processes in this complex matrix is challenging. Thus, up-to-date multiphase chemistry models generally do not consider non-ideal solution effects. Therefore, the present study was aimed at presenting further development of the SPACCIM (Spectral Aerosol Cloud Chemistry Interaction Model) through treatment of solution non-ideality, which has not been considered before. The present paper firstly describes the model developments including (i) the implementation of solution non-ideality in aqueous-phase reaction kinetics in the SPACCIM framework, (ii) the advancements in the coupling scheme of microphysics and multiphase chemistry and (iii) the required adjustments of the numerical schemes, especially in the sparse linear solver and the calculation of the Jacobian. Secondly, results of sensitivity investigations are outlined, aiming at the evaluation of different activity coefficient modules and the examination of the contributions of different intermolecular forces to the overall activity coefficients. Finally, first results obtained with the new model framework are presented. The SPACCIM parcel model was developed and, so far, applied for the description of aerosol–cloud interactions. To advance SPACCIM also for modeling physical and chemical processes in deliquesced particles, the solution non-ideality has to be taken into account by utilizing activities in reaction terms instead of aqueous concentrations. The main goal of the extended approach was to provide appropriate activity coefficients for solved species. Therefore, an activity coefficient module was incorporated into the kinetic model framework of SPACCIM. Based on an intercomparison of different activity coefficient models and the comparison with experimental data, the AIOMFAC approach was implemented and extended by additional interaction parameters from the literature for mixed organic–inorganic systems. Moreover, the performance and the capability of the applied activity coefficient module were evaluated by means of water activity measurements, literature data and results of other activity coefficient models. Comprehensive comparison studies showed that the SpactMod (SPACCIM activity coefficient module) is valuable for predicting the thermodynamic behavior of complex mixtures of multicomponent atmospheric aerosol particles. First simulations with a detailed chemical mechanism have demonstrated the applicability of SPACCIM-SpactMod. The simulations indicate that the treatment of solution non-ideality might be needed for modeling multiphase chemistry processes in deliquesced particles. The modeled activity coefficients imply that chemical reaction fluxes of chemical processes in deliquesced particles can be both decreased and increased depending on the particular species involved in the reactions. For key ions, activity coefficients on the order of 0.1–0.8 and a strong dependency on the charge state as well as the RH conditions are modeled, implying a lowered chemical processing of ions in concentrated solutions. In contrast, modeled activity coefficients of organic compounds are in some cases larger than 1 under deliquesced particle conditions and suggest the possibility of an increased chemical processing of organic compounds. Moreover, the model runs have shown noticeable differences in the pH values calculated with and without consideration of solution non-ideality. On average, the predicted pH values of the simulations considering solution non-ideality are −0.27 and −0.44 pH units lower under 90 and 70 % RH conditions, respectively. More comprehensive results of detailed SPACCIM-SpactMod studies on the multiphase processing in organic–inorganic mixtures of deliquesced particles are described in a companion paper.
  • Item
    Near-global aerosol mapping in the upper troposphere and lowermost stratosphere with data from the CARIBIC project
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Hermann, Markus; Weigelt, Andreas; Kapustin, Vladimir; Anderson, Bruce; Thornhill, Kenneth; Van Velthoven, Peter; Zahn, Andreas; Brenninkmeijer, Carl
    This study extrapolates aerosol data of the CARIBIC project from 1997 until June 2008 in along trajectories to compose large-scale maps and vertical profiles of submicrometre particle concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). The extrapolation was validated by comparing extrapolated values with CARIBIC data measured near the respective trajectory position and by comparing extrapolated CARIBIC data to measurements by other experiments near the respective trajectory positions. Best agreement between extrapolated and measured data is achieved with particle lifetimes longer than the maximum length of used trajectories. The derived maps reveal regions of strong and frequent new particle formation, namely the Tropical Central and Western Africa with the adjacent Atlantic, South America, the Caribbean and Southeast Asia. These regions of particle formation coincide with those of frequent deep convective clouds. Vertical particle concentration profiles for the troposphere and the stratosphere confirm statistically previous results indicating frequent new particle formation in the tropopause region. There was no statistically significant increase in Aitken mode particle concentration between the first period of CARIBIC operation, 1997–2002, and the second period, 2004–2009. However, a significant increase in concentration occurred within the latter period when considering it in isolation.
  • Item
    Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic - Results from the third route of 'CARIBIC'
    (Milton Park : Taylor & Francis, 2017) Hermann, M.; Brenninkmeijer, C.A.M.; Slemr, F.; Heintzenberg, J.; Martinsson, B.G.; Schlager, H.; Van Velthoven, P.F.J.; Wiedensohler, A.; Zahn, A.; Ziereis, H.
    Particle number and mass concentrations of submicrometer aerosol particles were determined for the upper troposphere over the mid-latitude North Atlantic within the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container project (CARIBIC, http://www.caribic-atmospheric.com). Between May 2001 and April 2002, 22 flights from Germany to the Caribbean were conducted using an automated measurement container on a B767 passenger aircraft. Spatial and seasonal probability distributions for ultrafine and Aitken mode particles as well as mass concentrations of particulate sulphur in 8–12 km altitude are presented. High particle number concentrations (mostly 2500–15 000 particles cm-3 STP) are particularly found in summer over the western North Atlantic Ocean close to the North American continent. The distributions together with an analysis of particle source processes show that deep vertical transport is the dominant process leading to most of the events with high particle number concentrations (8000 particles cm-3 STP) for ultrafine particles as well as for Aitken mode particles. This study emphasizes the importance of deep vertical transport and cloud processing for the concentration of aerosol particles in the upper troposphere.
  • Item
    The HadGEM2-ES implementation of CMIP5 centennial simulations
    (Göttingen : Copernicus, 2011) Jones, C.D.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O'Connor, F.M.; Andres, R.J.; Bell, C.; Boo, K.-O.; Bozzo, A.; Butchart, N.; Cadule, P.; Corbin, K.D.; Doutriaux-Boucher, M.; Friedlingstein, P.; Gornall, J.; Gray, L.; Halloran, P.R.; Hurtt, G.; Ingram, W.J.; Lamarque, J.-F.; Law, R.M.; Meinshausen, M.; Osprey, S.; Palin, E.J.; Parsons, Chini, L.; Raddatz, T.; Sanderson, M.G.; Sellar, A.A.; Schurer, A.; Valdes, P.; Wood, N.; Woodward, S.; Yoshioka, M.; Zerroukat, M.
    The scientific understanding of the Earth's climate system, including thecentral question of how the climate system is likely to respond tohuman-induced perturbations, is comprehensively captured in GCMs and EarthSystem Models (ESM). Diagnosing the simulated climate response, andcomparing responses across different models, is crucially dependent ontransparent assumptions of how the GCM/ESM has been driven - especiallybecause the implementation can involve subjective decisions and may differbetween modelling groups performing the same experiment. This paper outlinesthe climate forcings and setup of the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document theprescribed greenhouse gas concentrations, aerosol precursors, stratosphericand tropospheric ozone assumptions, as well as implementation of land-usechange and natural forcings for the HadGEM2-ES historical and futureexperiments following the Representative Concentration Pathways. Inaddition, we provide details of how HadGEM2-ES ensemble members wereinitialised from the control run and how the palaeoclimate and AMIPexperiments, as well as the "emission-driven" RCP experiments wereperformed.
  • Item
    The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
    (Katlenburg-Lindau : Copernicus, 2022) Dragoneas, Antonis; Molleker, Sergej; Appel, Oliver; Hünig, Andreas; Böttger, Thomas; Hermann, Markus; Drewnick, Frank; Schneider, Johannes; Weigel, Ralf; Borrmann, Stephan
    We report on the developments that enabled the field deployment of a fully automated aerosol mass spectrometer, especially designed for high-altitude measurements on unpressurized aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single-particle laser desorption and ionization and (b) continuous thermal desorption and electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named the ERICA (European Research Council Instrument for Chemical composition of Aerosols), operated successfully aboard the high-altitude research aircraft M-55 Geophysica at altitudes up to 20 km while being exposed to ambient conditions of very low atmospheric pressure and temperature. A primary goal of those field deployments was the in situ study of the Asian tropopause aerosol layer (ATAL). During 11 research flights, the instrument operated for more than 49 h and collected chemical composition information of more than 150 000 single particles combined with quantitative chemical composition analysis of aerosol particle ensembles. This paper presents in detail the technical characteristics of the main constituent parts of the instrument, as well as the design considerations for its integration into the aircraft and its autonomous operation in the upper troposphere and lower stratosphere (UTLS). Additionally, system performance data from the first field deployments of the instrument are presented and discussed, together with exemplary mass spectrometry data collected during those flights.
  • Item
    First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain
    (München : European Geopyhsical Union, 2011) Shen, X.J.; Sun, J.Y.; Zhang, Y.M.; Wehner, B.; Nowak, A.; Tuch, T.; Zhang, X.C.; Wang, T.T.; Zhou, H.G.; Zhang, X.L.; Dong, F.; Birmili, W.; Wiedensohler, A.
    Atmospheric particle number size distributions (size range 0.003–10 μm) were measured between March 2008 and August 2009 at Shangdianzi (SDZ), a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia) favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN) within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass concentration and extinction coefficient, indicative of a high abundance of condensable vapors in the atmosphere under study.
  • Item
    Chemical mass balance of 300 °c non-volatile particles at the tropospheric research site Melpitz, Germany
    (München : European Geopyhsical Union, 2014) Poulain, L.; Birmili, W.; Canonaco, F.; Crippa, M.; Wu, Z.J.; Nordmann, S.; Wiedensohler, A.; Held, A.; Spindler, G.; Prévôt, A.S.H.; Wiedensohler, A.; Herrmann, H.
    In the fine-particle mode (aerodynamic diameter < 1 μm) non-volatile material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyzes non-volatile particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle-size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May–June 2008 as well as February–March 2009. As a basic result, we detected average non-volatile particle–volume fractions of 11 ± 3% (2008) and 17 ± 8% (2009). In both periods, BC was in close linear correlation with the non-volatile fraction, but not sufficient to quantitatively explain the non-volatile particle mass concentration. Based on the assumption that BC is not altered by the heating process, the non-volatile particle mass fraction could be explained by the sum of black carbon (47% in summer, 59% in winter) and a non-volatile organic contribution estimated as part of the low-volatility oxygenated organic aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that LV-OOA was more volatile in summer (May–June 2008) than in winter (February–March 2009) which was linked to a difference in oxidation levels (lower in summer). Although carbonaceous compounds dominated the sub-μm non-volatile particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however from the carbonaceous particles by a characteristic particle volume–size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.
  • Item
    Analysis of number size distributions of tropical free tropospheric aerosol particles observed at Pico Espejo (4765 m a.s.l.), Venezuela
    (München : European Geopyhsical Union, 2011) Schmeissner, T.; Krejci, R.; Ström, J.; Birmili, W.; Wiedensohler, A.; Hochschild, G.; Gross, J.; Hoffmann, P.; Calderon, S.
    The first long-term measurements of aerosol number and size distributions in South-American tropical free troposphere (FT) were performed from March 2007 until March 2009. The measurements took place at the high altitude Atmospheric Research Station Alexander von Humboldt. The station is located on top of the Sierra Nevada mountain ridge at 4765 m a.s.l. nearby the city of Mérida, Venezuela. Aerosol size distribution and number concentration data was obtained with a custom-built Differential Mobility Particle Sizer (DMPS) system and a Condensational Particle Counter (CPC). The analysis of the annual and diurnal variability of the tropical FT aerosol focused mainly on possible links to the atmospheric general circulation in the tropics. Considerable annual and diurnal cycles of the particle number concentration were observed. Highest total particle number concentrations were measured during the dry season (January–March, 519 ± 613 cm−3), lowest during the wet season (July–September, 318 ± 194 cm−3). The more humid FT (relative humidity (RH) range 50–95 %) contained generally higher aerosol particle number concentrations (573 ± 768 cm−3 during dry season, 320 ± 195 cm−3 during wet season) than the dry FT (RH < 50 %, 454 ± 332 cm−3 during dry season, 275 ± 172 cm−3 during wet season), indicating the importance of convection for aerosol distributions in the tropical FT. The diurnal cycle in the variability of the particle number concentration was mainly driven by local orography.