Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation

2013, Winck, F.V., Arvidsson, S., Riaño-Pachón, D.M., Hempe, S., Koseska, A., Nikoloski, Z., Gomez, D.A.U., Rupprecht, J., Mueller-Roeber, B.

The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO 2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2 ), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.

Loading...
Thumbnail Image
Item

Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology

2014, Hoentsch, M., Bussiahn, R., Rebl, H., Bergemann, C., Eggert, M., Frank, M., Von Woedtke, T., Nebe, B.

Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first timedependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics.

Loading...
Thumbnail Image
Item

Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses

2024, Kirste, Gloria, Contreras Jaimes, Altair, de Pablos-Martín, Araceli, de Souza e Silva, Juliana Martins, Massera, Jonathan, Hill, Robert G., Brauer, Delia S.

Crystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris–HCl buffer solution for a series of glass–ceramics and their parent glasses in the system SiO2–CaO–P2O5–CaF2. Time-resolved X-ray diffraction analysis of glass–ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass–ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass–ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass–ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.

Loading...
Thumbnail Image
Item

Benchmarking successional progress in a quantitative food web

2014, Boit, A., Gaedke, U.

Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems.

Loading...
Thumbnail Image
Item

Strong and ductile high temperature soft magnets through Widmanstätten precipitates

2023, Han, Liuliu, Maccari, Fernando, Soldatov, Ivan, Peter, Nicolas J., Souza Filho, Isnaldi R., Schäfer, Rudolf, Gutfleisch, Oliver, Li, Zhiming, Raabe, Dierk

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.

Loading...
Thumbnail Image
Item

A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization

2010, Sebinger, D.D.R., Unbekandt, M., Ganeva, V.V., Ofenbauer, A., Werner, C., Davies, J.A.

Here, we present a novel method for culturing kidneys in low volumes of medium that offers more organotypic development compared to conventional methods. Organ culture is a powerful technique for studying renal development. It recapitulates many aspects of early development very well, but the established techniques have some disadvantages: in particular, they require relatively large volumes (1-3 mls) of culture medium, which can make high-throughput screens expensive, they require porous (filter) substrates which are difficult to modify chemically, and the organs produced do not achieve good cortico-medullary zonation. Here, we present a technique of growing kidney rudiments in very low volumes of medium-around 85 microliters-using silicone chambers. In this system, kidneys grow directly on glass, grow larger than in conventional culture and develop a clear anatomical cortico-medullary zonation with extended loops of Henle. © 2010 Sebinger et al.

Loading...
Thumbnail Image
Item

Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi

2024, Cheng, Erjian, Yan, Limin, Shi, Xianbiao, Lou, Rui, Fedorov, Alexander, Behnami, Mahdi, Yuan, Jian, Yang, Pengtao, Wang, Bosen, Cheng, Jin-Guang, Xu, Yuanji, Xu, Yang, Xia, Wei, Pavlovskii, Nikolai, Peets, Darren C., Zhao, Weiwei, Wan, Yimin, Burkhardt, Ulrich, Guo, Yanfeng, Li, Shiyan, Felser, Claudia, Yang, Wenge, Büchner, Bernd

The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.

Loading...
Thumbnail Image
Item

Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis

2012, Recknagel, P., Gonnert, F.A., Westermann, M., Lambeck, S., Lupp, A., Rudiger, A., Dyson, A., Carré, J.E., Kortgen, A., Krafft, C., Popp, J., Sponholz, C., Fuhrmann, V., Hilger, I., Claus, R.A., Riedemann, N.C., Wetzker, R., Singer, M., Trauner, M., Bauer, M.

Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.

Loading...
Thumbnail Image
Item

Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms

2013, Matthes, R., Bender, C., Schlüter, R., Koban, I., Bussiahn, R., Reuter, S., Lademann, J., Weltmann, K.-D., Kramer, A.

The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.

Loading...
Thumbnail Image
Item

Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets

2013, Zang, E., Brandes, S., Tovar, M., Martin, K., Mech, F., Horbert, P., Henkel, T., Figge, M.T., Roth, M.

The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.