Search Results

Now showing 1 - 3 of 3
  • Item
    A Review of Biomass Briquette Binders and Quality Parameters
    (Basel : MDPI, 2022) Obi, Okey Francis; Pecenka, Ralf; Clifford, Michael J.
    The adverse effect of the use of fossil fuels on the environment and public health has given rise to a sustained renewable energy research and development. An important component of global renewable energy mix is the use of loose biomass, including agricultural and forestry residues, to produce solid fuels in the form of briquettes. Briquettes play a significant role in bioenergy mix in developing and developed countries. The production of biomass briquettes often entails the collection, transportation, storage, processing, and compaction of loose biomass that meet specific quality parameters. The densification process often involves the addition of binders to improve the cohesive strength of the briquette material. This paper surveys recent literature from 2012 to 2021 to establish the current state of research on the use of binders in briquette production; and reviews current parameters used in assessing the quality of biomass briquettes with focus on mechanical and handling properties. While a number of quality parameters were identified, their assessment methodologies varied widely in the literature, thus necessitating standardization for comparability purposes. The review also includes factors affecting the wide production and adoption of biomass briquettes in most developing economies and proposes ways of overcoming the bottlenecks.
  • Item
    CUDe — Carbon utilization degree as an indicator for sustainable biomass use
    (Basel : MDPI, 2016) Anja Hansen, Anja Hansen; Budde, Jörn; Karatay, Yusuf Nadi; Prochnow, Annette
    Carbon (C) is a central element in organic compounds and is an indispensable resource for life. It is also an essential production factor in bio-based economies, where biomass serves many purposes, including energy generation and material production. Biomass conversion is a common case of transformation between different carbon-containing compounds. At each transformation step, C might be lost. To optimize the C use, the C flows from raw materials to end products must be understood. The estimation of how much of the initial C in the feedstock remains in consumable products and delivers services provides an indication of the C use efficiency. We define this concept as Carbon Utilization Degree (CUDe) and apply it to two biomass uses: biogas production and hemp insulation. CUDe increases when conversion processes are optimized, i.e., residues are harnessed and/or losses are minimized. We propose CUDe as a complementary approach for policy design to assess C as an asset for bio-based production. This may lead to a paradigm shift to see C as a resource that requires sustainable exploitation. It could complement the existing methods that focus solely on the climate impact of carbon.
  • Item
    Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press
    (Basel : MDPI, 2023) Orisaleye, Joseph I.; Jekayinfa, Simeon O.; Dittrich, Christian; Obi, Okey F.; Pecenka, Ralf
    Biomass has a high potential to contribute towards resolving the energy deficit. Processing biomass into solid fuels enhances its use in various bioenergy conversion technologies. The quality of densified biomass depends on several variables. The investigation of the effect of densification parameters on briquette quality is necessary for process optimization. This study investigates the influence of die temperature (100, 120, 140 °C) and feeding speed (2.4, 2.9, 3.3 mm s−1) on the quality of briquettes produced from poplar using a hydraulic biomass briquetting machine. The density of the briquettes ranged between 746.7 and 916.8 kg m−3, the mechanical durability ranged from 97.4 to 98.4%, and the water resistance index was between 91.6 and 96.1%. The results show that the temperature was statistically significant (p < 0.05) on the density, mechanical durability and water resistance of biomass briquettes. The feeding speed was statistically significant (p < 0.05) on the density and water resistance. The interaction of temperature and feeding speed was statistically significant (p < 0.05) on all properties considered. The results obtained in this study are useful for optimizing the quality of briquettes produced using the hydraulic piston press.