Search Results

Now showing 1 - 4 of 4
  • Item
    Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Gonçalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Comments on the authors’ reply to the critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Goncalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2021) Lotz, Benedict; Bothe, Friederike; Deubel, Anne-Kathrin; Hesse, Eliane; Renz, Yvonne; Werner, Carsten; Schäfer, Simone; Böck, Thomas; Groll, Jürgen; von Rechenberg, Brigitte; Richter, Wiltrud; Hagmann, Sebastien
    Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
  • Item
    Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)
    (Wyoming, NSW : Ivyspring, 2021) Strobbia, Pietro; Cupil-Garcia, Vanessa; Crawford, Bridget M.; Fales, Andrew M.; Pfefer, T. Joshua; Liu, Yang; Maiwald, Martin; Sumpf, Bernd; Vo-Dinh, Tuan
    For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.