Search Results

Now showing 1 - 2 of 2
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Impact of deuteration on the ultrafast nonlinear optical response of toluene and nitrobenzene
    (Washington D.C. : Optical Society of America, 2019) Karras, Christian; Chemnitz, Mario; Heintzmann, Rainer; Schmidt, Markus A.
    Nonlinear pulse propagation inside highly nonlinear media requires accurate knowledge on the temporal response function of the materials used particular in the case of liquids. Here we study the impact of deuteration on the ultrafast dynamics of toluene and nitrobenzene via all optical Kerr gating, showing substantially different electronic and molecular contributions, which was quantified by fitting a multichannel decay model to the data points. Specifically we found that deuteration imposes the time-integrated nonlinearities to reduce particular for toluene which could be caused by both reduced electronic hyperpolarizabilities as well as weaker intermolecular interactions. The results achieved reveal that deuterated organic solvents represent promising materials for infrared photonics since they offer extended infrared transmission compared to their non-deuterated counterparts while maintained strong nonlinear responses.