Search Results

Now showing 1 - 2 of 2
  • Item
    Optimal distributed control of a Cahn-Hilliard-Darcy system with mass sources
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Sprekels, Jürgen; Wu, Hao
    In this paper, we study an optimal control problem for a two-dimensional CahnHilliardDarcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fréchet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality.
  • Item
    Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Frigeri, Sergio; Grasselli, Maurizio; Sprekels, Jürgen
    In this paper, we consider a two-dimensional diffuse interface model for the phase separation of an incompressible and isothermal binary fluid mixture with matched densities. This model consists of the NavierStokes equations, nonlinearly coupled with a convective nonlocal CahnHilliard equation. The system rules the evolution of the (volume-averaged) velocity u of the mixture and the (relative) concentration difference ' of the two phases. The aim of this work is to study an optimal control problem for such a system, the control being a time-dependent external force v acting on the fluid. We first prove the existence of an optimal control for a given tracking type cost functional. Then we study the differentiability properties of the control-to-state map v 7! [u; '], and we establish first-order necessary optimality conditions. These results generalize the ones obtained by the first and the third authors jointly with E. Rocca in [19]. There the authors assumed a constant mobility and a regular potential with polynomially controlled growth. Here, we analyze the physically more relevant case of a degenerate mobility and a singular (e.g., logarithmic) potential. This is made possible by the existence of a unique strong solution which was recently proved by the authors and C. G. Gal in [14].