Search Results

Now showing 1 - 2 of 2
  • Item
    Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
    (Munich : EGU, 2015) Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
  • Item
    Potential effects of climate change on inundation patterns in the Amazon Basin
    (Chichester : John Wiley and Sons Ltd, 2013) Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W.
    Floodplain forests, namely the Várzea and Igapó, cover an area of more than 97 000 km2. A key factor for their function and diversity is annual flooding. Increasing air temperature and higher precipitation variability caused by climate change are expected to shift the flooding regime during this century, and thereby impact floodplain ecosystems, their biodiversity and riverine ecosystem services. To assess the effects of climate change on the flooding regime, we use the Dynamic Global Vegetation and Hydrology Model LPJmL, enhanced by a scheme that realistically simulates monthly flooded area. Simulation results of discharge and inundation under contemporary conditions compare well against site-level measurements and observations. The changes of calculated inundation duration and area under climate change projections from 24 IPCC AR4 climate models differ regionally towards the end of the 21st century. In all, 70% of the 24 climate projections agree on an increase of flooded area in about one third of the basin. Inundation duration increases dramatically by on average three months in western and around one month in eastern Amazonia. The time of high- and low-water peak shifts by up to three months. Additionally, we find a decrease in the number of extremely dry years and in the probability of the occurrence of three consecutive extremely dry years. The total number of extremely wet years does not change drastically but the probability of three consecutive extremely wet years decreases by up to 30% in the east and increases by up to 25% in the west. These changes implicate significant shifts in regional vegetation and climate, and will dramatically alter carbon and water cycles.