Search Results

Now showing 1 - 2 of 2
  • Item
    Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites
    (Bristol : IOP Publishing, 2022) Spirito, Davide; Asensio, Yaiza; Hueso, Luis E.; Martín-García, Beatriz
    The continuous progress in the synthesis and characterization of materials in the vast family of hybrid organic-inorganic metal halide perovskites (HOIPs) has been pushed by their exceptional properties mainly in optoelectronic applications. These works highlight the peculiar role of lattice vibrations, which strongly interact with electrons, resulting in coupled states affecting the optical properties. Among these materials, layered (2D) HOIPs have emerged as a promising material platform to address some issues of their three-dimensional counterparts, such as ambient stability and ion migration. Layered HOIPs consist of inorganic layers made of metal halide octahedra separated by layers composed of organic cations. They have attracted much interest not only for applications, but also for their rich phenomenology due to their crystal structure tunability. Here, we give an overview of the main experimental findings achieved via Raman spectroscopy in several configurations and set-ups, and how they contribute to shedding light on the complex structural nature of these fascinating materials. We focus on how the phonon spectrum comes from the interplay of several factors. First, the inorganic and organic parts, whose motions are coupled, contribute with their typical modes which are very different in energy. Nonetheless, the interaction between them is relevant, as it results in low-symmetry crystal structures. Then, the role of external stimuli, such as temperature and pressure, which induce phase transitions affecting the spectrum through change in symmetry of the lattice, octahedral tilting and arrangement of the molecules. Finally, the relevant role of the coupling between the charge carriers and optical phonons is highlighted.
  • Item
    Atomic-Scale Mapping and Quantification of Local Ruddlesden-Popper Phase Variations
    (Washington, DC : ACS Publ., 2022) Fleck, Erin E.; Barone, Matthew R.; Nair, Hari P.; Schreiber, Nathaniel J.; Dawley, Natalie M.; Schlom, Darrell G.; Goodge, Berit H.; Kourkoutis, Lena F.
    The Ruddlesden-Popper (An+1BnO3n+1) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different n-phases based on atomic-resolution scanning transmission electron microscopy (STEM) images. We employ image phase analysis to identify horizontal Ruddlesden-Popper faults within the lattice images and quantify the local structure. Our semiautomated technique considers effects of finite projection thickness, limited fields of view, and lateral sampling rates. This method retains real-space distribution of layer variations allowing for spatial mapping of local n-phases to enable quantification of intergrowth occurrence and qualitative description of their distribution suitable for a wide range of layered materials.