Search Results

Now showing 1 - 3 of 3
  • Item
    Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles
    (Washington, DC : American Chemical Society, 2019) Piché, Dominique; Tavernaro, Isabella; Fleddermann, Jana; Lozano, Juan G.; Varambhia, Aakash; Maguire, Mahon L.; Koch, Marcus; Ukai, Tomofumi; Hernández Rodríguez, Armando J.; Jones, Lewys; Dillon, Frank; Reyes Molina, Israel; Mitzutani, Mai; González Dalmau, Evelio R.; Maekawa, Toru; Nellist, Peter D.; Kraegeloh, Annette; Grobert, Nicole
    Extraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of 12 nm. The particles displayed superparamagnetic properties and a low r2/r1 ratio suitable for a T1 contrast agent. The particles were functionalized with bile acid, which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step toward liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents.
  • Item
    One-Pot Synthesis of Copper Iodide-Polypyrrole Nanocomposites
    (Basel : MDPI, 2021) Konakov, Artem O.; Dremova, Nadejda N.; Khodos, Igor I.; Koch, Marcus; Zolotukhina, Ekaterina V.; Silina, Yuliya
    A novel one-pot chemical synthesis of functional copper iodide-polypyrrole composites, CuI-PPy, has been proposed. The fabrication process allows the formation of nanodimensional metal salt/polymer hybrid structures in a fully controlled time- and concentration-dependent manner. The impact of certain experimental conditions, viz., duration of synthesis, sequence of component addition and concentrations of the intact reagents on the structure, dimensionality and yield of the end-product was evaluated in detail. More specifically, the amount of marshite CuI within the hybrid composite can be ranged from 60 to 90 wt.%, depending on synthetic conditions (type and concentration of components, process duration). In addition, the conditions allowing the synthesis of nano-sized CuI distributed inside the polypyrrole matrix were found. A high morphological stability and reproducibility of the synthesized nanodimensional metal-polymer hybrid materials were approved. Finally, the electrochemical activity of the formed composites was verified by cyclic voltammetry studies. The stability of CuI-PPy composite deposited on the electrodes was strongly affected by the applied anodic limit. The proposed one-pot synthesis of the hybrid nanodimensional copper iodide-polypyrrole composites is highly innovative, meets the requirements of Green Chemistry and is potentially useful for future biosensor development. In addition, this study is expected to generally contribute to the knowledge on the hybrid nano-based composites with tailored properties.
  • Item
    Effects of Promoter on Structural and Surface Properties of Zirconium Oxide-Based Catalyst Materials
    (Basel : MDPI AG, 2020) Borovinskaya, E.S.; Oswald, S.; Reschetilowski, W.
    Ternary mixed oxide systems CuO/ZnO/ZrO2 and CuO/NiO/ZrO2 were synthesized by one-pot synthesis for a better understanding of the synthesis-property relationships of zirconium oxide-based catalyst materials. The prepared mixed oxide samples were analysed by a broad range of characterisation methods (XRD, N2-physisorption, Temperature-Programmed Ammonia Desorption (TPAD), and XPS) to examine the structural and surface properties, as well as to identify the location of the potential catalytically active sites. By XPS analysis, it could be shown that a progressive enrichment of the surface composition with copper takes place by changing from ZnO to NiO as a promoter. Thus, by addition of the second component, not only electronic but also the geometric properties of active sites, i.e., copper species distribution within the catalyst surface, can be affected in a desired way.