Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring the Cavity of Hollow Polyelectrolyte Microgels
    (Weinheim : Wiley-VCH, 2020) Wypysek, Sarah K.; Scotti, Andrea; Alziyadi, Mohammed O.; Potemkin, Igor I.; Denton, Alan R.; Richtering, Walter
    The authors demonstrate how the size and structure of the cavity of hollow charged microgels may be controlled by varying pH and ionic strength. Hollow charged microgels based on N-isopropylacrylamide with ionizable co-monomers (itaconic acid) combine advanced structure with enhanced responsiveness to external stimuli. Structural advantages accrue from the increased surface area provided by the extra internal surface. Extreme sensitivity to pH and ionic strength due to ionizable moieties in the polymer network differentiates these soft colloidal particles from their uncharged counterparts, which sustain a hollow structure only at cross-link densities sufficiently high that stimuli sensitivity is reduced. Using small-angle neutron and light scattering, increased swelling of the network in the charged state accompanied by an expanded internal cavity is observed. Upon addition of salt, the external fuzziness of the microgel surface diminishes while the internal fuzziness grows. These structural changes are interpreted via Poisson–Boltzmann theory in the cell model. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    E/Z reversible photoisomerization of methyl orange doped polyacrylic acid-based polyelectrolyte brush films
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2022) Al‐Bataineh, Qais M.; Telfah, Ahmad D.; Ahmad, Ahmad A.; Bani‐Salameh, Areen A.; Abu‐Zurayk, Rund; Hergenröder, Roland
    The photoswitching behavior of the polyacrylic acid (PAA) doped by methyl orange (MO) brush film was investigated using spectral analysis of UV-Vis absorbance, Fourier Transformation Infrared spectroscopy, 2D electrical conductivity mapping and Atomic Force Microscopy. The kinetics and time evolution of the photoisomerization of the PAA-MO PEBs film from E-state to Z-state by UV-light irradiation, and reverse thermal relaxation to E-state was explored. The results confirm that the photoisomerization kinetics of the overall peak is the superposition of the photoisomerization kinetics of (Formula presented.) transition, low- and high-frequency of the (Formula presented.) transition bands. The E–Z transformation led to transforming the azobenzene from flat with no dipole moment to 3.0 D dipole moment. Hence, the electrical conductivity escalated accordingly. The transformation of E-state to Z-state led to the collapse of the formed brushes because of the angular rotational momentum consequent to E–Z isomerization.