Search Results

Now showing 1 - 8 of 8
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China
    (Katlenburg-Lindau : EGU, 2017) Li, Jiarong; Wang, Xinfeng; Chen, Jianmin; Zhu, Chao; Li, Weijun; Li, Chengbao; Liu, Lu; Xu, Caihong; Wen, Liang; Xue, Likun; Wang, Wenxing; Ding, Aijun; Herrmann, Hartmut
    The chemical composition of 39 cloud samples and droplet size distributions in 24 cloud events were investigated at the summit of Mt. Tai from July to October 2014. Inorganic ions, organic acids, metals, HCHO, H2O2, sulfur( IV), organic carbon, and elemental carbon as well as pH and electrical conductivity were analyzed. The acidity of the cloud water significantly decreased from a reported value of pH 3.86 during 2007-2008 (Guo et al., 2012) to pH 5.87 in the present study. The concentrations of nitrate and ammonium were both increased since 2007-2008, but the overcompensation of ammonium led to an increase in the mean pH value. The microphysical properties showed that cloud droplets were smaller than 26.0 μm and most were in the range of 6.0-9.0 μm at Mt. Tai. The maximum droplet number concentration (Nd) was associated with a droplet size of 7.0 μm. High liquid water content (LWC) values could facilitate the formation of larger cloud droplets and broadened the droplet size distribution. Cloud droplets exhibited a strong interaction with atmospheric aerosols. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions and smaller sizes with increased numbers of cloud droplets. The lower pH values were likely to occur at higher PM2.5 concentrations. Clouds were an important sink for soluble materials in the atmosphere. The dilution effect of cloud water should be considered when estimating concentrations of soluble components in the cloud phase.
  • Item
    New particle formation in the Svalbard region 2006-2015
    (Katlenburg-Lindau : EGU, 2017) Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
    Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical "banana type" of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multisize growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
  • Item
    Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
    (Katlenburg-Lindau : EGU, 2022) Man, Ruiqi; Wu, Zhijun; Zong, Taomou; Voliotis, Aristeidis; Qiu, Yanting; Größ, Johannes; van Pinxteren, Dominik; Zeng, Limin; Herrmann, Hartmut; Wiedensohler, Alfred; Hu, Min
    Particle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses on the basis of the particle number concentration for children, adults, and the elderly were quantified using the Multiple-Path Particle Dosimetry model, based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD); the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such a reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group of people had the highest total dose among three age groups, while children received the maximum total deposition rate. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated, and those of larger particles were underestimated, assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of (2.88 ± 0.81) × 109 particles h-1 during the daytime were larger than those at night ((2.32 ± 0.24) × 109 particles h-1). On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 particles h-1) than those in the day ((2.58 ± 0.76) × 108 particles h-1). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT. Copyright:
  • Item
    The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
    (Katlenburg-Lindau : EGU, 2020) Li, Jiarong; Zhu, Chao; Chen, Hui; Zhao, Defeng; Xue, Likun; Wang, Xinfeng; Li, Hongyong; Liu, Pengfei; Liu, Junfeng; Zhang, Chenglong; Mu, Yujing; Zhang, Wenjin; Zhang, Luming; Herrmann, Hartmut; Li, Kai; Liu, Min; Chen, Jianmin
    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and the behaviours of clouds and their influence on climate. In an attempt to better understand the microphysical properties of cloud droplets, the simultaneous variations in aerosol microphysics and their potential interactions during cloud life cycles in the North China Plain, an intensive observation took place from 17 June to 30 July 2018 at the summit of Mt. Tai. Cloud microphysical parameters were monitored simultaneously with number concentrations of cloud condensation nuclei (NCCN) at different supersaturations, PM2:5 mass concentrations, particle size distributions and meteorological parameters. Number concentrations of cloud droplets (NC), liquid water content (LWC) and effective radius of cloud droplets (reff) show large variations among 40 cloud events observed during the campaign. The low values of reff and LWC observed at Mt. Tai are comparable with urban fog. Clouds on clean days are more susceptible to the change in concentrations of particle number (NP), while clouds formed on polluted days might be more sensitive to meteorological parameters, such as updraft velocity and cloud base height. Through studying the size distributions of aerosol particles and cloud droplets, we find that particles larger than 150 nm play important roles in forming cloud droplets with the size of 5-10 μm. In general, LWC consistently varies with reff. As NC increases, reff changes from a trimodal distribution to a unimodal distribution and shifts to smaller size mode. By assuming a constant cloud thickness and ignoring any lifetime effects, increase in NC and decrease in reff would increase cloud albedo, which may induce a cooling effect on the local climate system. Our results contribute valuable information to enhance the understanding of cloud and aerosol properties, along with their potential interactions on the North China plain. © Author(s) 2020.
  • Item
    Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014
    (Katlenburg-Lindau : EGU, 2018) Herenz, Paul; Wex, Heike; Henning, Silvia; Kristensen, Thomas Bjerring; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank
    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90ĝ€†nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (N CN). Generally, N CN ranged from 20 to 500 cmg'3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cmg'3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter of the CCN was determined to be 0.23 on average and variations in were largely attributed to measurement uncertainties.

    Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.
  • Item
    A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system
    (Katlenburg-Lindau : EGU, 2017) Kuang, Ye; Zhao, Chunsheng; Tao, Jiangchuan; Bian, Yuxuan; Ma, Nan; Zhao, Gang
    Aerosol hygroscopicity is crucial for understanding roles of aerosol particles in atmospheric chemistry and aerosol climate effects. Light-scattering enhancement factor f (RH, λ) is one of the parameters describing aerosol hygroscopicity, which is defined as f (RH, λ) = δsp(RH, λ)=δsp(dry, λ), where δsp(RH, λ) or δsp(dry, λ) represents δsp at wavelength λ under certain relative humidity (RH) or dry conditions. Traditionally, an overall hygroscopicity parameter κ can be retrieved from measured f (RH, λ), hereinafter referred to as κf(RH), by combining concurrently measured particle number size distribution (PNSD) and mass concentration of black carbon. In this paper, a new method is proposed to directly derive κf(RH) based only on measurements from a three-wavelength humidified nephelometer system. The advantage of this newly proposed approach is that κf(RH) can be estimated without any additional information about PNSD and black carbon. This method is verified with measurements from two different field campaigns. Values of κf(RH) estimated from this new method agree very well with those retrieved by using the traditional method: all points lie near the 1 : 1 line and the square of correlation coefficient between them is 0.99. The verification results demonstrate that this newly proposed method of deriving κf(RH) is applicable at different sites and in seasons of the North China Plain and might also be applicable in other regions around the world.
  • Item
    Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
    (Katlenburg-Lindau : EGU, 2018) Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.