Search Results

Now showing 1 - 10 of 138
  • Item
    Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
    (München : European Geopyhsical Union, 2016) van Pinxteren, Dominik; Fomba, Khanneh Wadinga; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut
    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42−,NO3−, NH4+, Cl−, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L−1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L−1 for minor ions, 5.4 µmol L−1 for H2O2 (aq), 1.9 µmol L−1 for S(IV), and 3.9 mgC L−1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20–40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60–66 % for solute concentrations and 52–80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56–0.94, 0.79–0.99, 0.71–98, and 0.67–0.92 for SO42−, NO3−, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42−, NO3−, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and “U” shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5–10) in the smallest droplets for many solutes.
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
    (München : European Geopyhsical Union, 2014) Gonser, S.G.; Klein, F.; Birmili, W.; Größ, J.; Kulmala, M.; Manninen, H.E.; Wiedensohler, A.; Held, A.
    In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.
  • Item
    Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport
    (Katlenburg-Lindau : European Geosciences Union, 2021) Ungeheuer, Florian; van Pinxteren, Dominik; Vogel, Alexander L.
    Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010-0.018, 0.018-0.032, 0.032-0.056 classCombining double low lineinline-formula/m) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-Target screening detected classCombining double low lineinline-formulag1/4200/ organic compounds in the UFP fraction with sample-To-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS classCombining double low lineinline-formula2/) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g.Tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-iortho/i isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports./p. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Importance of secondary organic aerosol formation of iα/i-pinene, limonene, and im/i-cresol comparing day- And nighttime radical chemistry
    (Katlenburg-Lindau : European Geosciences Union, 2021) Mutzel, Anke; Zhang, Yanli; Böge, Olaf; Rodigast, Maria; Kolodziejczyk, Agata; Wang, Xinming; Herrmann, Hartmut
    The oxidation of biogenic and anthropogenic compounds leads to the formation of secondary organic aerosol mass (SOA). The present study aims to investigate span classCombining double low line"inline-formula"iα/i/span-pinene, limonene, and span classCombining double low line"inline-formula"im/i/span-cresol with regards to their SOA formation potential dependent on relative humidity (RH) under night- (NOspan classCombining double low line"inline-formula"3/span radicals) and daytime conditions (OH radicals) and the resulting chemical composition. It was found that SOA formation potential of limonene with NOspan classCombining double low line"inline-formula"3/span under dry conditions significantly exceeds that of the OH-radical reaction, with SOA yields of 15-30 % and 10-21 %, respectively. Additionally, the nocturnal SOA yield was found to be very sensitive towards RH, yielding more SOA under dry conditions. In contrast, the SOA formation potential of span classCombining double low line"inline-formula"iα/i/span-pinene with NOspan classCombining double low line"inline-formula"3/span slightly exceeds that of the OH-radical reaction, independent from RH. On average, span classCombining double low line"inline-formula"iα/i/span-pinene yielded SOA with about 6-7 % from NOspan classCombining double low line"inline-formula"3/span radicals and 3-4 % from OH-radical reaction. Surprisingly, unexpectedly high SOA yields were found for span classCombining double low line"inline-formula"im/i/span-cresol oxidation with OH radicals (3-9 %), with the highest yield under elevated RH (9 %), which is most likely attributable to a higher fraction of 3-methyl-6-nitro-catechol (MNC). While span classCombining double low line"inline-formula"iα/i/span-pinene and span classCombining double low line"inline-formula"im/i/span-cresol SOA was found to be mainly composed of water-soluble compounds, 50-68 % of nocturnal SOA and 22-39 % of daytime limonene SOA are water-insoluble. The fraction of SOA-bound peroxides which originated from span classCombining double low line"inline-formula"iα/i/span-pinene varied between 2 and 80 % as a function of RH./p pFurthermore, SOA from span classCombining double low line"inline-formula"iα/i/span-pinene revealed pinonic acid as the most important particle-phase constituent under day- and nighttime conditions with a fraction of 1-4 %. Other compounds detected are norpinonic acid (0.05-1.1 % mass fraction), terpenylic acid (0.1-1.1 % mass fraction), pinic acid (0.1-1.8 % mass fraction), and 3-methyl-1,2,3-tricarboxylic acid (0.05-0.5 % mass fraction). All marker compounds showed higher fractions under dry conditions when formed during daytime and showed almost no RH effect when formed during night./p © 2021 Copernicus GmbH. All rights reserved.
  • Item
    Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: Evaluation of candidate approaches with MODIS observations
    (Katlenburg-Lindau : Copernicus, 2020) Werner, Frank; Deneke, Hartwig
    This study presents and evaluates several candidate approaches for downscaling observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) in order to increase the horizontal resolution of subsequent cloud optical thickness (τ) and effective droplet radius (reff) retrievals from the native ≈ 3km×3km spatial resolution of the narrowband channels to ≈ 1km×1km. These methods make use of SEVIRI's coincident broadband high-resolution visible (HRV) channel. For four example cloud fields, the reliability of each downscaling algorithm is evaluated by means of collocated 1km×1km MODIS radiances, which are reprojected to the horizontal grid of the HRV channel and serve as reference for the evaluation. By using these radiances, smoothed with the modulation transfer function of the native SEVIRI channels, as retrieval input, the accuracy at the SEVIRI standard resolution can be evaluated and an objective comparison of the accuracy of the different downscaling algorithms can be made. For the example scenes considered in this study, it is shown that neglecting high-frequency variations below the SEVIRI standard resolution results in significant random absolute deviations of the retrieved τ and reff of up to ≈ 14 and ≈ 6μm, respectively, as well as biases. By error propagation, this also negatively impacts the reliability of the subsequent calculation of liquid water path (WL) and cloud droplet number concentration (ND), which exhibit deviations of up to ≈ 89gm-2 and ≈ 177cm-3, respectively. For τ , these deviations can be almost completely mitigated by the use of the HRV channel as a physical constraint and by applying most of the presented downscaling schemes. Uncertainties in retrieved reff at the native SEVIRI resolution are smaller, and the improvements from downscaling the observations are less obvious than for τ. Nonetheless, the right choice of downscaling scheme yields noticeable improvements in the retrieved reff. Furthermore, the improved reliability in retrieved cloud products results in significantly reduced uncertainties in derived WL and ND. In particular, one downscaling approach provides clear improvements for all cloud products compared to those obtained from SEVIRI's standard resolution and is recommended for future downscaling endeavors. This work advances efforts to mitigate impacts of scale mismatches among channels of multiresolution instruments on cloud retrievals. © Author(s) 2020.
  • Item
    Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles
    (Göttingen : Copernicus GmbH, 2019) Gong, X.; Wex, H.; Müller, T.; Wiedensohler, A.; Höhler, K.; Kandler, K.; Ma, N.; Dietel, B.; Schiebel, T.; Möhler, O.; Stratmann, F.
    As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, to characterize the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in particular. New particle formation (NPF) events with subsequent growth of the particles into the CCN size range were observed. Aitken mode particles featured k values of 0.21 to 0.29, indicating the presence of organic materials. Accumulation mode particles featured a higher hygroscopicity parameter, with a median k value of 0.57, suggesting the presence of sulfate and maybe sea salt particles mixed with organic carbon. A clear downward trend of k with increasing supersaturation and decreasing dcrit was found. Super-micron particles originated mainly from sea-spray aerosol (SSA) and partly from mineral dust. INP concentrations (NINP) were measured in the temperature range from-6:5 to-26:5 °C, using two freezing array-type instruments. NINP at a particular temperature span around 1 order of magnitude below-20 °C and about 2 orders of magnitude at warmer temperatures (T >-18 °C). Few samples showed elevated concentrations at temperatures >-15 °C, which suggests a significant contribution of biological particles to the INP population, which possibly could originate from Cyprus. Both measured temperature spectra and NINP probability density functions (PDFs) indicate that the observed INP (ice active in the temperature range between-15 and-20 °C) mainly originate from long-range transport. There was no correlation between NINP and particle number concentration in the size range> 500 nm (N>500 nm). Parameterizations based on N>500 nm were found to overestimate NINP by about 1 to 2 orders of magnitude. There was also no correlation between NINP and particle surface area concentration. The ice active surface site density (ns) for the polluted aerosol encountered in the eastern Mediterranean in this study is about 1 to 3 orders of magnitude lower than the ns found for dust aerosol particles in previous studies. This suggests that observed NINP PDFs such as those derived here could be a better choice for modeling NINP if the aerosol particle composition is unknown or uncertain.
  • Item
    The vertical aerosol type distribution above Israel – 2 years of lidar observations at the coastal city of Haifa
    (Katlenburg-Lindau : EGU, 2022) Heese, Birgit; Floutsi, Athena Augusta; Baars, Holger; Althausen, Dietrich; Hofer, Julian; Herzog, Alina; Mewes, Silke; Radenz, Martin; Schechner, Yoav Y.
    For the first time, vertically resolved long-term lidar measurements of the aerosol distribution were conducted in Haifa, Israel. The measurements were performed by a PollyXT multi-wavelength Raman and polarization lidar. The lidar was measuring continuously over a 2-year period from March 2017 to May 2019. The resulting data set is a series of manually evaluated lidar optical property profiles. To identify the aerosol types in the observed layers, a novel aerosol typing method that was developed at TROPOS is used. This method applies optimal estimation to a combination of lidar-derived intensive aerosol properties to determine the statistically most-likely contribution per aerosol component in terms of relative volume. A case study that shows several elevated aerosol layers illustrates this method and shows, for example, that coarse dust particles are observed up to 5ĝ€¯km height over Israel. From the whole data set, the seasonal distribution of the observed aerosol components over Israel is derived. Throughout all seasons, coarse spherical particles like sea salt and hygroscopically grown continental aerosol were observed. These particles originate from continental Europe and were transported over the Mediterranean Sea. Sea-salt particles were observed frequently due to the coastal site of Haifa. The highest contributions of coarse spherical particles are present in summer, autumn, and winter. During spring, mostly coarse non-spherical particles that are attributed to desert dust were observed. This is consistent with the distinct dust season in spring in Israel. An automated time-height-resolved air mass source attribution method identifies the origin of the dust in the Sahara and the Arabian deserts. Fine-mode spherical particles contribute significantly to the observed aerosol mixture during all seasons. These particles originate mainly from the industrial region at the bay of Haifa.
  • Item
    Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany
    (München : European Geopyhsical Union, 2014) Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.
    In the course of two field campaigns, size-segregated particle samples were collected at nine sites in Germany, including traffic, urban, rural, marine and mountain sites. During the chemical characterisation of the samples some of them were found to contain an unknown substance that was later identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the reaction of S(IV) (HSO3− or SO32−) with formaldehyde in the aqueous phase. Due to its stability, HMSA can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the understanding of atmospheric sulfur chemistry. However, no HMSA data are available for atmospheric particles from central Europe, and even on a worldwide scale data are scarce. Thus, the present study now provides a representative data set with detailed information on HMSA concentrations in size-segregated central European aerosol particles. HMSA mass concentrations in this data set were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in high mass concentrations exceeding those of oxalic acid. On average over all 154 impactor runs, 31.5 ng m−3 HMSA was found in PM10, contributing 0.21% to the total mass. The results show that the particle diameter, the sampling location, the sampling season and the air mass origin impact the HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42–1.2 μm, at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulfate, oxalate and PM is found (R2 > 0.4). The results furthermore suggest that the fraction of HMSA in PM slightly decreases with increasing pH.
  • Item
    ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer
    (München : European Geopyhsical Union, 2015) Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.
    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL.