Search Results

Now showing 1 - 2 of 2
  • Item
    Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation
    (Washington, DC : ACS Publications, 2021) Weigel, Niclas; Männel, Max J.; Thiele, Julian
    We develop resins for high-resolution additive manufacturing of flexible micromaterials via projection microstereolithography (PμSL) screening formulations made from monomer 2-phenoxyethyl acrylate, the cross-linkers Ebecryl 8413, tri(propyleneglycol) diacrylate or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, the photoabsorber Sudan 1, and the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. PμSL-printed polymer micromaterials made from this resin library are characterized regarding achievable layer thickness depending on UV exposure energy, and for mechanical as well as optical properties. The best-candidate resin from this screening approach allows for 3D-printing transparent microchannels with a minimum cross section of approximately 35 × 46 μm2, which exhibit proper solvent resistance against water, isopropanol, ethanol, n-hexane, and HFE-7500. The mechanical properties are predestined for 3D-printing microfluidic devices with integrated functional units that require high material flexibility. Exemplarily, we design flexible microchannels for on-demand regulation of microdroplet sizes in microemulsion formation. Our two outlines of integrated droplet regulators operate by injecting defined volumes of air, which deform the droplet-forming microchannel cross-junction, and change the droplet size therein. With this study, we expand the library of functional resins for PμSL printing toward flexible materials with micrometer resolution and provide the basis for further exploration of these materials, e.g., as microstructured cell-culturing substrates with defined mechanics. © 2021 American Chemical Society. All rights reserved.
  • Item
    Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery
    (Washington, DC : ACS Publications, 2021) Newland, Ben; Newland, Heike; Lorenzi, Francesca; Eigel, Dimitri; Dieter FischerWelzel, Petra B.; Fischer, Dieter; Wang, Wenxin; Freudenberg, Uwe; Rosser, Anne; Werner, Carsten
    Glycosaminoglycan-based hydrogels hold great potential for applications in tissue engineering and regenerative medicine. By mimicking the natural extracellular matrix processes of growth factor binding and release, such hydrogels can be used as a sustained delivery device for growth factors. Since neural networks commonly follow well-defined, high-aspect-ratio paths through the central and peripheral nervous system, we sought to create a fiber-like, elongated growth factor delivery system. Cryogels, with networks formed at subzero temperatures, are well-suited for the creation of high-aspect-ratio biomaterials, because they have a macroporous structure making them mechanically robust (for ease of handling) yet soft and highly compressible (for interfacing with brain tissue). Unlike hydrogels, cryogels can be synthesized in advance of their use, stored with ease, and rehydrated quickly to their original shape. Herein, we use solvent-assisted microcontact molding to form sacrificial templates, in which we produced highly porous cryogel microscale scaffolds with a well-defined elongated shape via the photopolymerization of poly(ethylene glycol) diacrylate and maleimide-functionalized heparin. Dissolution of the template yielded cryogels that could load nerve growth factor (NGF) and release it over a period of 2 weeks, causing neurite outgrowth in PC12 cell cultures. This microscale template-assisted synthesis technique allows tight control over the cryogel scaffold dimensions for high reproducibility and ease of injection through fine gauge needles. ©