Search Results

Now showing 1 - 2 of 2
  • Item
    New charge-transfer states in blends of ZnPC with F8ZnPC
    (College Park, ML : American Institute of Physics, 2021) Graf, Lukas; Ortstein, Katrin; Doctor, Louis P.; Naumann, Marco; Beyer, Jan; Heitmann, Johannes; Leo, Karl; Knupfer, Martin
    With the aim of pushing the knowledge and understanding on mixed films of organic semiconductors forward, blends of ZnPC and F8ZnPC in different ratios are manufactured. The films have a polycrystalline structure, as indicated by electron diffraction profiles and infrared-spectroscopy. Photoluminescence data show completely different spectra for the blends, compared to the pure materials, which can be ascribed to the suppressing of excimer formation and the appearance of a new charge-transfer excitation between the two different molecules in the blends. This new excitation can also be seen in optical absorption. Momentum dependent measurements of the electronic excitations by electron energy-loss spectroscopy confirm the localized character of the new charge-transfer excitation in the blends. Our experimental data help understand the important issue of donor/acceptor coupling in organic semiconductors.
  • Item
    Efficient and affordable thermomagnetic materials for harvesting low grade waste heat
    (College Park, ML : American Institute of Physics, 2021) Dzekan, Daniel; Waske, Anja; Nielsch, Kornelius; Fähler, Sebastian
    Industrial processes release substantial quantities of waste heat, which can be harvested to generate electricity. At present, the conversion of low grade waste heat to electricity relies solely on thermoelectric materials, but such materials are expensive and have low thermodynamic efficiencies. Although thermomagnetic materials may offer a promising alternative, their performance remains to be evaluated, thereby hindering their real-world application. Here, the efficiency and cost effectiveness of thermomagnetic materials are evaluated for the usage in motors, oscillators, and generators for converting waste heat to electricity. The analysis reveals that up to temperature differences of several 10 K, the best thermomagnetic materials have the potential to compete with thermoelectric materials. Importantly, it is found that the price per watt of some thermomagnetic materials is much lower compared to that of present-day thermoelectrics, which can become competitive with conventional power plants. This materials library enables the selection of the best available thermomagnetic materials for harvesting waste heat and gives guidelines for their future development.