Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Ni-In Synergy in CO2Hydrogenation to Methanol

2021, Zhu, Jiadong, Cannizzaro, Francesco, Liu, Liang, Zhang, Hao, Kosinov, Nikolay, Filot, Ivo A.W., Rabeah, Jabor, Brückner, Angelika, Hensen, Emiel J.M.

Indium oxide (In2O3) is a promising catalyst for selective CH3OH synthesis from CO2but displays insufficient activity at low reaction temperatures. By screening a range of promoters (Co, Ni, Cu, and Pd) in combination with In2O3using flame spray pyrolysis (FSP) synthesis, Ni is identified as the most suitable first-row transition-metal promoter with similar performance as Pd-In2O3. NiO-In2O3was optimized by varying the Ni/In ratio using FSP. The resulting catalysts including In2O3and NiO end members have similar high specific surface areas and morphology. The main products of CO2hydrogenation are CH3OH and CO with CH4being only observed at high NiO loading (≥75 wt %). The highest CH3OH rate (∼0.25 gMeOH/(gcath), 250 °C, and 30 bar) is obtained for a NiO loading of 6 wt %. Characterization of the as-prepared catalysts reveals a strong interaction between Ni cations and In2O3at low NiO loading (≤6 wt %). H2-TPR points to a higher surface density of oxygen vacancy (Ov) due to Ni substitution. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electron paramagnetic resonance analysis of the used catalysts suggest that Ni cations can be reduced to Ni as single atoms and very small clusters during CO2hydrogenation. Supportive density functional theory calculations indicate that Ni promotion of CH3OH synthesis from CO2is mainly due to low-barrier H2dissociation on the reduced Ni surface species, facilitating hydrogenation of adsorbed CO2on Ov © 2021 The Authors. Published by American Chemical Society

Loading...
Thumbnail Image
Item

Color Tuning of Electrochromic TiO2Nanofibrous Layers Loaded with Metal and Metal Oxide Nanoparticles for Smart Colored Windows

2021, Eyovge, Cavit, Deenen, Cristian S., Ruiz-Zepeda, Francisco, Bartling, Stephan, Smirnov, Yury, Morales-Masis, Monica, Susarrey-Arce, Arturo, Gardeniers, Han

Co-axial electrospinning was applied for the structuring of non-woven webs of TiO2 nanofibers loaded with Ag, Au, and CuO nanoparticles. The composite layers were tested in an electrochromic half-cell assembly. A clear correlation between the nanoparticle composition and electrochromic effect in the nanofibrous composite is observed: TiO2 loaded with Ag reveals a black-brown color, Au shows a dark-blue color, and CuO shows a dark-green color. For electrochromic applications, the Au/TiO2 layer is the most promising choice, with a color modulation time of 6 s, transmittance modulation of 40%, coloration efficiency of 20 cm2/C, areal capacitance of 300 F/cm2, and cyclic stability of over 1000 cycles in an 18 h period. In this study, an unexplored path for the rational design of TiO2-based electrochromic device is offered with unique color-switching and optical efficiency gained by the fibrous layer. It is also foreseen that co-axial electrospinning can be an alternative nanofabrication technique for smart colored windows. © 2021 The Authors. Published by American Chemical Society.

Loading...
Thumbnail Image
Item

The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors

2015, Smith, Dan A., Beweries, Torsten, Blasius, Clemens, Jasim, Naseralla, Nazir, Ruqia, Nazir, Sadia, Robertson, Craig C., Whitwood, Adrian C., Hunter, Christopher A., Brammer, Lee, Perutz, Robin N.

The association constants and enthalpies for the binding of hydrogen bond donors to group 10 transition metal complexes featuring a single fluoride ligand (trans-[Ni(F)(2-C5NF4)(PR3)2], R = Et 1a, Cy 1b, trans-[Pd(F)(4-C5NF4)(PCy3)2] 2, trans-[Pt(F){2-C5NF2H(CF3)}(PCy3)2] 3 and of group 4 difluorides (Cp2MF2, M = Ti 4a, Zr 5a, Hf 6a; Cp*2MF2, M = Ti 4b, Zr 5b, Hf 6b) are reported. These measurements allow placement of these fluoride ligands on the scales of organic H-bond acceptor strength. The H-bond acceptor capability β (Hunter scale) for the group 10 metal fluorides is far greater (1a 12.1, 1b 9.7, 2 11.6, 3 11.0) than that for group 4 metal fluorides (4a 5.8, 5a 4.7, 6a 4.7, 4b 6.9, 5b 5.6, 6b 5.4), demonstrating that the group 10 fluorides are comparable to the strongest organic H-bond acceptors, such as Me3NO, whereas group 4 fluorides fall in the same range as N-bases aniline through pyridine. Additionally, the measurement of the binding enthalpy of 4-fluorophenol to 1a in carbon tetrachloride (−23.5 ± 0.3 kJ mol–1) interlocks our study with Laurence’s scale of H-bond basicity of organic molecules. The much greater polarity of group 10 metal fluorides than that of the group 4 metal fluorides is consistent with the importance of pπ–dπ bonding in the latter. The polarity of the group 10 metal fluorides indicates their potential as building blocks for hydrogen-bonded assemblies. The synthesis of trans-[Ni(F){2-C5NF3(NH2)}(PEt3)2], which exhibits an extended chain structure assembled by hydrogen bonds between the amine and metal-fluoride groups, confirms this hypothesis.