Search Results

Now showing 1 - 4 of 4
  • Item
    Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)
    (Chichester : John Wiley and Sons Ltd, 2018) Ren, W.; Zhu, H.; Zhu, Q.; Saparamadu, U.; He, R.; Liu, Z.; Mao, J.; Wang, C.; Nielsch, K.; Wang, Z.; Ren, Z.
    Conversion efficiency and output power are crucial parameters for thermoelectric power generation that highly rely on figure of merit ZT and power factor (PF), respectively. Therefore, the synergistic optimization of electrical and thermal properties is imperative instead of optimizing just ZT by thermal conductivity reduction or just PF by electron transport enhancement. Here, it is demonstrated that Nb0.95Hf0.05FeSb has not only ultrahigh PF over ≈100 µW cm−1 K−2 at room temperature but also the highest ZT in a material system Nb0.95M0.05FeSb (M = Hf, Zr, Ti). It is found that Hf dopant is capable to simultaneously supply carriers for mobility optimization and introduce atomic disorder for reducing lattice thermal conductivity. As a result, Nb0.95Hf0.05FeSb distinguishes itself from other outstanding NbFeSb-based materials in both the PF and ZT. Additionally, a large output power density of ≈21.6 W cm−2 is achieved based on a single-leg device under a temperature difference of ≈560 K, showing the realistic prospect of the ultrahigh PF for power generation.
  • Item
    Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis
    (Melville, NY : AIP Publ., 2020) Adkison, Kate M.; Shang, Shun-Li; Bocklund, Brandon J.; Klimm, Detlef; Schlom, Darrell G.; Liu, Zi-Kui
    We have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature. © 2020 Author(s).
  • Item
    Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds
    (Cambridge : RSC Publ., 2020) He, Ran; Zhu, Taishan; Wang, Yumei; Wolff, Ulrike; Jaud, Jean-Christophe; Sotnikov, Andrei; Potapov, Pavel; Wolf, Daniel; Ying, Pingjun; Wood, Max; Liu, Zhenhui; Feng, Le; Perez Rodriguez, Nicolas; Snyder, G. Jeffrey; Grossman, Jeffrey C.; Nielsch, Kornelius; Schierning, Gabi
    Half-Heusler (HH) compounds are among the most promising thermoelectric (TE) materials for large-scale applications due to their superior properties such as high power factor, excellent mechanical and thermal reliability, and non-toxicity. Their only drawback is the remaining-high lattice thermal conductivity. Various mechanisms were reported with claimed effectiveness to enhance the phonon scattering of HH compounds including grain-boundary scattering, phase separation, and electron–phonon interaction. In this work, however, we show that point-defect scattering has been the dominant mechanism for phonon scattering other than the intrinsic phonon–phonon interaction for ZrCoSb and possibly many other HH compounds. Induced by the charge-compensation effect, the formation of Co/4d Frenkel point defects is responsible for the drastic reduction of lattice thermal conductivity in ZrCoSb1−xSnx. Our work systematically depicts the phonon scattering profile of HH compounds and illuminates subsequent material optimizations.
  • Item
    Conversion of p–n conduction type by spinodal decomposition in Zn-Sb-Bi phase-change alloys
    ([London] : Macmillan Publishers Limited, part of Springer Nature Tokyo, 2020) Wang, Guoxiang; Shi, Haizhou; Lotnyk, Andriy; Shi, Daotian; Wang, Rongping
    Phase-change films with multiple resistance levels are promising for increasing the storage density in phase-change memory technology. Diffusion-dominated Zn2Sb3 films undergo transitions across three states, from high through intermediate to low resistance, upon annealing. The properties of the Zn2Sb3 material can be further optimized by doping with Bi. Based on scanning transmission electron microscopy combined with electrical transport measurements, at a particular Bi concentration, the conduction of Zn-Sb-Bi compounds changes from p- to n-type, originating from spinodal decomposition. Simultaneously, the change in the temperature coefficient of resistivity shows a metal-to-insulator transition. Further analysis of microstructure characteristics reveals that the distribution of the Bi-Sb phase may be the origin of the driving force for the p–n conduction and metal-to-insulator transitions and therefore may provide us with another way to improve multilevel data storage. Moreover, the Bi doping promotes the thermoelectric properties of the studied alloys, leading to higher values of the power factor compared to known reported structures. The present study sheds valuable light on the spinodal decomposition process caused by Bi doping, which can also occur in a wide variety of chalcogenide-based phase-change materials. In addition, the study provides a new strategy for realizing novel p–n heterostructures for multilevel data storage and thermoelectric applications.