Search Results

Now showing 1 - 3 of 3
  • Item
    Bone marrow niche-mimetics modulate HSPC function via integrin signaling
    (London : Nature Publishing Group, 2017) Kräter, Martin; Jacobi, Angela; Otto, Oliver; Tietze, Stefanie; Müller, Katrin; Poitz, David M.; Palm, Sandra; Zinna, Valentina M.; Biehain, Ulrike; Wobus, Manja; Chavakis, Triantafyllos; Werner, Carsten; Guck, Jochen; Bornhauser, Martin
    The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
  • Item
    Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Schöneberg, Jan; De Lorenzi, Federica; Theek, Benjamin; Blaeser, Andreas; Rommel, Dirk; Kuehne, Alexander J. C.; Kießling, Fabian; Fischer, Horst
    Recent advances in the field of bioprinting have led to the development of perfusable complex structures. However, most of the existing printed vascular channels lack the composition or key structural and physiological features of natural blood vessels or they make use of more easily printable but less biocompatible hydrogels. Here, we use a drop-on-demand bioprinting technique to generate in vitro blood vessel models, consisting of a continuous endothelium imitating the tunica intima, an elastic smooth muscle cell layer mimicking the tunica media, and a surrounding fibrous and collagenous matrix of fibroblasts mimicking the tunica adventitia. These vessel models with a wall thickness of up to 425 µm and a diameter of about 1 mm were dynamically cultivated in fluidic bioreactors for up to three weeks under physiological flow conditions. High cell viability (>83%) after printing and the expression of VE-Cadherin, smooth muscle actin, and collagen IV were observed throughout the cultivation period. It can be concluded that the proposed novel technique is suitable to achieve perfusable vessel models with a biofunctional multilayer wall composition. Such structures hold potential for the creation of more physiologically relevant in vitro disease models suitable especially as platforms for the pre-screening of drugs.
  • Item
    An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger
    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers and with experimental observations of an amorphous cover layer in biominerals.