Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Changes in black carbon emissions over Europe due to COVID-19 lockdowns

2021, Evangeliou, Nikolaos, Platt, Stephen M., Eckhardt, Sabine, Lund Myhre, Cathrine, Laj, Paolo, Alados-Arboledas, Lucas, Backman, John, Brem, Benjamin T., Fiebig, Markus, Flentje, Harald, Marinoni, Angela, Pandolfi, Marco, Yus-Dìez, Jesus, Prats, Natalia, Putaud, Jean P., Sellegri, Karine, Sorribas, Mar, Eleftheriadis, Konstantinos, Vratolis, Stergios, Wiedensohler, Alfred, Stohl, Andreas

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.

Loading...
Thumbnail Image
Item

An Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments

2020, Ahlawat, Ajit, Wiedensohler, Alfred, Mishra, Sumit Kumar

COVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China and spread with an astonishing rate across the world. The transmission routes of SARS-CoV-2 are still debated, but recent evidence strongly suggests that COVID-19 could be transmitted via air in poorly ventilated places. Some studies also suggest the higher surface stability of SARS-CoV-2 as compared to SARS-CoV-1. It is also possible that small viral particles may enter into indoor environments from the various emission sources aided by environmental factors such as relative humidity, wind speed, temperature, thus representing a type of an aerosol transmission. Here, we explore the role of relative humidity in airborne transmission of SARS-CoV-2 virus in indoor environments based on recent studies around the world. Humidity affects both the evaporation kinematics and particle growth. In dry indoor places i.e., less humidity (< 40% RH), the chances of airborne transmission of SARS-CoV-2 are higher than that of humid places (i.e., > 90% RH). Based on earlier studies, a relative humidity of 40–60% was found to be optimal for human health in indoor places. Thus, it is extremely important to set a minimum relative humidity standard for indoor environments such as hospitals, offices and public transports for minimization of airborne spread of SARS-CoV-2. © The Author(s).

Loading...
Thumbnail Image
Item

Editorial: Impact of the COVID-19 lockdown on the atmosphere

2022, Fadnavis, Suvarna, Roxy, M.K., Griessbach, Sabine, Heinold, Bernd, Kaskaoutis, Dimitris G., Gautam, Ritesh

[no abstract available]